PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o433.
Published online 2010 January 23. doi:  10.1107/S1600536810002254
PMCID: PMC2979884

2-Methyl-N-(3-methyl­benzo­yl)benzene­sulfonamide

Abstract

In the title compound, C15H15NO3S, the sulfonyl and amide-bound benzene rings are oriented at dihedral angles of 83.1 (1) and 22.5 (3)°, respectively, with the almost planar S—N—C=O segment (r.m.s. deviation = 0.003 Å). The dihedral angle between the two benzene rings is 74.8 (1)°. In the crystal structure, pairs of mol­ecules are linked into centrosymmetric dimers by pairs of N—H(...)O hydrogen bonds.

Related literature

For background literature and similar structures, see: Gowda et al. (2009a [triangle],b [triangle]); Suchetan et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o433-scheme1.jpg

Experimental

Crystal data

  • C15H15NO3S
  • M r = 289.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o433-efi1.jpg
  • a = 18.023 (4) Å
  • b = 12.045 (3) Å
  • c = 17.335 (4) Å
  • β = 127.67 (1)°
  • V = 2978.7 (12) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 1.99 mm−1
  • T = 299 K
  • 0.30 × 0.18 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • 10158 measured reflections
  • 2654 independent reflections
  • 2219 reflections with I > 2σ(I)
  • R int = 0.072
  • 3 standard reflections every 120 min intensity decay: 1.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.176
  • S = 1.08
  • 2654 reflections
  • 187 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002254/ci5020sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002254/ci5020Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As part of a study of the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009a,b; Suchetan et al., 2010), in the present work, the structure of N-(3-methylbenzoyl)-2-methylbenzenesulfonamide (I) has been determined (Fig.1). The conformation of the N—H bond in the C—SO2—NH—C(O) segment of the structure is anti to the C═O bond, similar to that observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009a) and N-(3-chlorobenzoyl)- benzenesulfonamide (III)(Gowda et al., 2009b). The molecule is twisted at the S atom with a dihedral angle of 83.1 (1)° between the sulfonyl-bound benzene ring and the S-NH-C═O segment, compared to the values of 86.5 (1) in (II) and 89.9 (1)° in (III). Furthermore, the dihedral angle between the two benzene rings is 74.8 (1)° in (I) and 80.3(0.1) in (II) and 87.5 (1)° in (III).

The molecules are linked into dimers by N—H···O(S) hydrogen bonds (Table 1 and Fig. 2).

Experimental

The title compound was prepared by refluxing a mixture of 3-methylbenzoic acid, 2-methylbenzenesulfonamide and phosphorous oxy chloride for 5 h on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid, N-(3-methylbenzoyl)2-methylbenzenesulfonamide, was separated, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried compound was recrystallized to the constant melting point. Prism like colourless single crystals of the title compound were grown by slow evaporation of its toluene solution at room temperature.

Refinement

The H atom of the NH group was located in a difference map and its positional parameters were refined with the N-H distance restrained to 0.86 (3) Å. The remaining H atoms were positioned with idealized geometry and refined using a riding model with C–H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H15NO3SF(000) = 1216
Mr = 289.34Dx = 1.290 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 18.023 (4) Åθ = 4.8–20.5°
b = 12.045 (3) ŵ = 1.99 mm1
c = 17.335 (4) ÅT = 299 K
β = 127.67 (1)°Prism, colourless
V = 2978.7 (12) Å30.30 × 0.18 × 0.18 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.072
Radiation source: fine-focus sealed tubeθmax = 67.0°, θmin = 4.6°
graphiteh = −21→21
ω/2θ scansk = −14→14
10158 measured reflectionsl = −20→20
2654 independent reflections3 standard reflections every 120 min
2219 reflections with I > 2σ(I) intensity decay: 1.5%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.176w = 1/[σ2(Fo2) + (0.0835P)2 + 3.6838P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.007
2654 reflectionsΔρmax = 0.41 e Å3
187 parametersΔρmin = −0.28 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0016 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.39278 (5)0.37414 (6)0.48527 (5)0.0536 (3)
O10.41777 (17)0.48868 (19)0.50971 (18)0.0718 (7)
O20.39810 (16)0.3050 (2)0.55495 (15)0.0708 (7)
O30.41415 (18)0.15139 (19)0.4361 (2)0.0767 (7)
N10.46572 (18)0.3289 (2)0.4653 (2)0.0586 (7)
H1N0.499 (2)0.381 (2)0.472 (3)0.070*
C10.2810 (2)0.3633 (2)0.3733 (2)0.0499 (7)
C20.2518 (2)0.4330 (2)0.2951 (2)0.0592 (8)
C30.1604 (3)0.4177 (3)0.2116 (3)0.0777 (10)
H30.13810.46250.15780.093*
C40.1016 (3)0.3391 (3)0.2053 (3)0.0773 (10)
H40.04070.33190.14800.093*
C50.1322 (2)0.2713 (3)0.2829 (3)0.0715 (9)
H50.09240.21820.27870.086*
C60.2223 (2)0.2827 (3)0.3672 (2)0.0590 (8)
H60.24400.23640.42000.071*
C70.4670 (2)0.2184 (3)0.4415 (2)0.0600 (8)
C80.5356 (2)0.1891 (3)0.4240 (2)0.0605 (8)
C90.5736 (2)0.2662 (3)0.3972 (2)0.0674 (9)
H90.55890.34110.39330.081*
C100.6332 (3)0.2327 (4)0.3764 (3)0.0878 (12)
C110.6549 (4)0.1236 (5)0.3850 (5)0.1154 (19)
H110.69350.10000.36950.138*
C120.6215 (4)0.0456 (4)0.4160 (5)0.1150 (18)
H120.6407−0.02800.42510.138*
C130.5602 (3)0.0787 (3)0.4328 (3)0.0810 (11)
H130.53480.02660.45030.097*
C140.3103 (3)0.5223 (3)0.2966 (3)0.0810 (11)
H14A0.37140.49340.32370.097*
H14B0.31610.58310.33570.097*
H14C0.28090.54760.23130.097*
C150.6712 (4)0.3156 (5)0.3441 (4)0.1154 (17)
H15A0.73280.33810.39910.138*
H15B0.63080.37930.31680.138*
H15C0.67440.28260.29580.138*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0517 (5)0.0539 (5)0.0577 (5)−0.0039 (3)0.0348 (4)−0.0060 (3)
O10.0712 (14)0.0582 (13)0.0930 (16)−0.0136 (11)0.0538 (14)−0.0249 (12)
O20.0653 (14)0.0888 (17)0.0578 (12)−0.0003 (12)0.0374 (11)0.0127 (11)
O30.0791 (16)0.0542 (13)0.1081 (19)−0.0074 (11)0.0629 (15)−0.0032 (12)
N10.0540 (15)0.0563 (15)0.0753 (16)−0.0050 (11)0.0445 (13)−0.0054 (13)
C10.0525 (16)0.0454 (15)0.0561 (15)0.0004 (12)0.0353 (14)−0.0020 (12)
C20.0656 (19)0.0518 (16)0.0650 (18)0.0056 (14)0.0423 (16)0.0049 (14)
C30.081 (2)0.079 (2)0.0598 (19)0.013 (2)0.0361 (19)0.0094 (17)
C40.061 (2)0.081 (2)0.064 (2)−0.0008 (18)0.0243 (17)−0.0085 (18)
C50.0584 (19)0.068 (2)0.080 (2)−0.0135 (16)0.0380 (18)−0.0138 (18)
C60.0602 (18)0.0550 (17)0.0639 (18)−0.0037 (14)0.0391 (15)−0.0003 (14)
C70.0608 (18)0.0506 (17)0.0637 (18)0.0005 (14)0.0355 (16)−0.0008 (14)
C80.0585 (17)0.0582 (18)0.0635 (18)0.0009 (14)0.0367 (15)−0.0061 (14)
C90.075 (2)0.0611 (19)0.074 (2)−0.0045 (16)0.0503 (19)−0.0077 (16)
C100.090 (3)0.103 (3)0.092 (3)−0.013 (2)0.067 (2)−0.021 (2)
C110.116 (4)0.110 (4)0.173 (5)−0.014 (3)0.115 (4)−0.047 (4)
C120.118 (4)0.086 (3)0.170 (5)0.006 (3)0.103 (4)−0.031 (3)
C130.084 (3)0.057 (2)0.107 (3)0.0001 (18)0.062 (2)−0.0099 (19)
C140.093 (3)0.067 (2)0.095 (3)0.0019 (19)0.063 (2)0.019 (2)
C150.120 (4)0.144 (5)0.127 (4)−0.023 (3)0.099 (4)−0.009 (3)

Geometric parameters (Å, °)

S1—O21.421 (2)C7—C81.484 (4)
S1—O11.433 (2)C8—C131.381 (5)
S1—N11.643 (3)C8—C91.391 (5)
S1—C11.750 (3)C9—C101.386 (5)
O3—C71.209 (4)C9—H90.93
N1—C71.398 (4)C10—C111.353 (7)
N1—H1N0.83 (2)C10—C151.499 (6)
C1—C61.392 (4)C11—C121.387 (7)
C1—C21.396 (4)C11—H110.93
C2—C31.388 (5)C12—C131.364 (6)
C2—C141.494 (5)C12—H120.93
C3—C41.376 (6)C13—H130.93
C3—H30.93C14—H14A0.96
C4—C51.368 (5)C14—H14B0.96
C4—H40.93C14—H14C0.96
C5—C61.375 (5)C15—H15A0.96
C5—H50.93C15—H15B0.96
C6—H60.93C15—H15C0.96
O2—S1—O1117.85 (15)C13—C8—C9119.3 (3)
O2—S1—N1109.70 (15)C13—C8—C7117.2 (3)
O1—S1—N1103.55 (14)C9—C8—C7123.4 (3)
O2—S1—C1109.46 (14)C10—C9—C8120.7 (4)
O1—S1—C1109.93 (14)C10—C9—H9119.7
N1—S1—C1105.55 (14)C8—C9—H9119.7
C7—N1—S1122.6 (2)C11—C10—C9118.2 (4)
C7—N1—H1N128 (3)C11—C10—C15121.4 (4)
S1—N1—H1N109 (3)C9—C10—C15120.4 (4)
C6—C1—C2121.9 (3)C10—C11—C12122.4 (4)
C6—C1—S1116.3 (2)C10—C11—H11118.8
C2—C1—S1121.9 (2)C12—C11—H11118.8
C3—C2—C1115.8 (3)C13—C12—C11119.0 (4)
C3—C2—C14119.3 (3)C13—C12—H12120.5
C1—C2—C14124.9 (3)C11—C12—H12120.5
C4—C3—C2122.7 (3)C12—C13—C8120.3 (4)
C4—C3—H3118.6C12—C13—H13119.8
C2—C3—H3118.6C8—C13—H13119.8
C5—C4—C3120.3 (3)C2—C14—H14A109.5
C5—C4—H4119.9C2—C14—H14B109.5
C3—C4—H4119.9H14A—C14—H14B109.5
C4—C5—C6119.3 (3)C2—C14—H14C109.5
C4—C5—H5120.3H14A—C14—H14C109.5
C6—C5—H5120.3H14B—C14—H14C109.5
C5—C6—C1120.0 (3)C10—C15—H15A109.5
C5—C6—H6120.0C10—C15—H15B109.5
C1—C6—H6120.0H15A—C15—H15B109.5
O3—C7—N1120.2 (3)C10—C15—H15C109.5
O3—C7—C8122.8 (3)H15A—C15—H15C109.5
N1—C7—C8117.0 (3)H15B—C15—H15C109.5
O2—S1—N1—C751.6 (3)C2—C1—C6—C5−1.1 (5)
O1—S1—N1—C7178.3 (3)S1—C1—C6—C5177.6 (3)
C1—S1—N1—C7−66.2 (3)S1—N1—C7—O3−1.1 (5)
O2—S1—C1—C6−7.5 (3)S1—N1—C7—C8179.1 (2)
O1—S1—C1—C6−138.4 (2)O3—C7—C8—C13−20.9 (5)
N1—S1—C1—C6110.5 (2)N1—C7—C8—C13158.9 (3)
O2—S1—C1—C2171.3 (2)O3—C7—C8—C9157.4 (3)
O1—S1—C1—C240.4 (3)N1—C7—C8—C9−22.8 (5)
N1—S1—C1—C2−70.7 (3)C13—C8—C9—C102.1 (5)
C6—C1—C2—C30.8 (5)C7—C8—C9—C10−176.3 (3)
S1—C1—C2—C3−178.0 (2)C8—C9—C10—C11−1.5 (6)
C6—C1—C2—C14179.1 (3)C8—C9—C10—C15177.8 (4)
S1—C1—C2—C140.4 (5)C9—C10—C11—C12−1.6 (8)
C1—C2—C3—C40.0 (5)C15—C10—C11—C12179.1 (5)
C14—C2—C3—C4−178.5 (4)C10—C11—C12—C134.1 (9)
C2—C3—C4—C5−0.3 (6)C11—C12—C13—C8−3.3 (8)
C3—C4—C5—C60.0 (6)C9—C8—C13—C120.4 (6)
C4—C5—C6—C10.7 (5)C7—C8—C13—C12178.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.06 (2)2.884 (4)179 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5020).

References

  • Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o2516. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2750. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.
  • Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o327. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography