PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m105.
Published online 2010 January 9. doi:  10.1107/S1600536809055196
PMCID: PMC2979881

Bis(1,10-phenanthrolin-1-ium) hexa­bromidoplatinate(IV) dihydrate

Abstract

The asymmetric unit of the title compound, (C12H9N2)2[PtBr6]·2H2O, contains a protonated 1,10-phenanthroline cation (H-phen), one half of a [PtBr6]2− anionic complex and a solvent water mol­ecule. The PtIV ion is located on an inversion centre and is coordinated in an octa­hedral environment by six Br atoms. The crystal structure displays numerous inter­molecular π–π inter­actions between six-membered rings of H-phen, with a shortest centroid–centroid distance of 3.670 (5) Å, and inter­molecular N—H(...)O, O—H(...)Br and O—H(...)N hydrogen bonds.

Related literature

For the thermal decomposition of (H-phen)2[PtBr6]·H2O, see: Liptay et al. (1992 [triangle]). For other [PtBr6]2− complexes, see: Grundy & Brown (1970 [triangle]); Hu et al. (2009 [triangle]); Yusenko et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m105-scheme1.jpg

Experimental

Crystal data

  • (C12H9N2)2[PtBr6]·2H2O
  • M r = 1073.01
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m105-efi1.jpg
  • a = 8.1999 (6) Å
  • b = 9.5808 (7) Å
  • c = 9.6342 (7) Å
  • α = 83.811 (1)°
  • β = 73.300 (1)°
  • γ = 74.961 (2)°
  • V = 699.67 (9) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 13.61 mm−1
  • T = 200 K
  • 0.21 × 0.19 × 0.11 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.577, T max = 1.000
  • 4327 measured reflections
  • 2684 independent reflections
  • 2236 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.095
  • S = 1.13
  • 2684 reflections
  • 169 parameters
  • H-atom parameters constrained
  • Δρmax = 1.77 e Å−3
  • Δρmin = −1.37 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809055196/hy2266sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055196/hy2266Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

supplementary crystallographic information

Comment

The compound, (H-phen)2(PtBr6).H2O (H-phen is monoprotonated 1,10-phenanthroline cation), was previously prepared by the reaction of H2PtBr6.6H2O with 1,10-phenanthroline and HBr, and its thermal decomposition was studied by means of derivatography and differential scanning calorimetry (Liptay et al., 1992).

The asymmetric unit of the title compound, (H-phen)2(PtBr6).2H2O, contains a protonated 1,10-phenanthroline cation, one half of a PtBr6 anionic complex and a solvent water molecule (Fig. 1). In the complex, the PtIV ion is coordinated in an almost perfect octahedral environment by six Br atoms and a centre of inversion is located at the Pt atom with the special position (1/2, 0, 1/2). The Pt—Br bond lengths are nearly equivalent with the range of 2.4725 (9)–2.4755 (9) Å (Table 1) and the cis Br—Pt—Br bond angles lie in the range of 89.41 (3)–90.59 (3)°. These values are similar to those found in the complexes K2PtBr6 (Grundy & Brown, 1970), [Rh(NH3)5Cl][PtBr6] (Yusenko et al., 2002) and (C21H19N2)2(PtBr6) (Hu et al., 2009). The crystal structure displays numerous intermolecular π–π interactions between six-membered rings of H-phen, with a shortest centroid–centroid distance of 3.670 (5) Å. There are also intermolecular N—H···O, O—H···Br and O—H···N hydrogen bonds (Fig. 2 and Table 2).

Experimental

To a solution of K2PtBr6 (0.101 g, 0.134 mmol) in H2O (10 ml) was added 1,10-phenanthroline (0.027 g, 0.147 mmol). The mixture was stirred for 8 h at room temperature. The precipitate obtained was separated by filtration, washed with acetone and dried at 50 °C, to give a dark orange powder (0.051 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95, N—H = 0.88 Å and Uiso(H) = 1.2Ueq(C, N)]. The H atoms of the water molecule were located from difference Fourier maps, but not refined [Uiso(H) = 1.5Ueq(O)]. The highest peak (1.77 e Å-3) and the deepest hole (-1.37 e Å-3) in the difference Fourier map are located 1.11 and 1.27 Å, respectively, from the atoms Pt1 and Br1.

Figures

Fig. 1.
The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) 1-x, -y, 1-z.]
Fig. 2.
View of the unit-cell contents of the title compound. Hydrogen bonds are drawn with dashed lines.

Crystal data

(C12H9N2)2[PtBr6]·2H2OZ = 1
Mr = 1073.01F(000) = 498
Triclinic, P1Dx = 2.547 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1999 (6) ÅCell parameters from 2462 reflections
b = 9.5808 (7) Åθ = 2.2–26.0°
c = 9.6342 (7) ŵ = 13.61 mm1
α = 83.811 (1)°T = 200 K
β = 73.300 (1)°Block, red
γ = 74.961 (2)°0.21 × 0.19 × 0.11 mm
V = 699.67 (9) Å3

Data collection

Bruker SMART 1000 CCD diffractometer2684 independent reflections
Radiation source: fine-focus sealed tube2236 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −10→5
Tmin = 0.577, Tmax = 1.000k = −11→11
4327 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.0229P)2 + 6.779P] where P = (Fo2 + 2Fc2)/3
2684 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 1.77 e Å3
0 restraintsΔρmin = −1.37 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pt10.50000.00000.50000.02001 (15)
Br10.55354 (13)−0.02152 (11)0.74241 (10)0.0305 (2)
Br20.81815 (12)−0.08964 (11)0.38859 (10)0.0314 (2)
Br30.53880 (12)0.24992 (10)0.47143 (10)0.0285 (2)
N10.9383 (10)0.2591 (8)0.1579 (8)0.0297 (18)
H110.96420.18480.10250.036*
N20.8156 (10)0.2812 (9)−0.0880 (8)0.0299 (18)
C10.9906 (13)0.2386 (12)0.2773 (10)0.036 (2)
H11.04930.14450.30330.043*
C20.9605 (13)0.3535 (12)0.3656 (11)0.036 (2)
H21.00020.33950.45070.044*
C30.8717 (12)0.4879 (11)0.3265 (10)0.032 (2)
H30.84860.56760.38600.038*
C40.8147 (12)0.5086 (10)0.1992 (9)0.0236 (19)
C50.7304 (12)0.6471 (10)0.1520 (10)0.026 (2)
H50.70920.72870.20830.032*
C60.6798 (12)0.6644 (10)0.0280 (10)0.029 (2)
H60.62500.7582−0.00210.035*
C70.7080 (11)0.5430 (11)−0.0586 (9)0.024 (2)
C80.6533 (12)0.5559 (11)−0.1871 (9)0.027 (2)
H80.59880.6480−0.22120.033*
C90.6794 (12)0.4360 (11)−0.2609 (10)0.028 (2)
H90.64410.4425−0.34760.034*
C100.7605 (13)0.3001 (11)−0.2063 (10)0.032 (2)
H100.77610.2169−0.25860.039*
C110.7892 (11)0.4034 (11)−0.0142 (9)0.025 (2)
C120.8468 (11)0.3880 (9)0.1150 (9)0.0203 (18)
O10.1634 (13)1.0222 (10)0.0141 (10)0.072 (3)
H210.23260.9999−0.08910.109*
H220.19430.95250.09840.109*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pt10.0223 (3)0.0181 (3)0.0209 (3)−0.00115 (19)−0.01071 (19)−0.00139 (18)
Br10.0391 (6)0.0287 (5)0.0263 (5)−0.0014 (4)−0.0189 (4)−0.0018 (4)
Br20.0222 (5)0.0312 (6)0.0382 (5)0.0001 (4)−0.0090 (4)−0.0045 (4)
Br30.0360 (5)0.0207 (5)0.0313 (5)−0.0061 (4)−0.0134 (4)−0.0008 (4)
N10.034 (5)0.016 (4)0.031 (4)0.004 (3)−0.007 (4)0.002 (3)
N20.034 (5)0.031 (5)0.021 (4)−0.007 (4)0.001 (3)−0.011 (3)
C10.032 (5)0.040 (6)0.034 (5)−0.010 (5)−0.014 (4)0.023 (5)
C20.032 (6)0.052 (7)0.035 (6)−0.019 (5)−0.018 (4)0.002 (5)
C30.030 (5)0.034 (6)0.029 (5)−0.006 (4)−0.004 (4)−0.003 (4)
C40.031 (5)0.020 (5)0.028 (5)−0.012 (4)−0.019 (4)0.010 (4)
C50.033 (5)0.018 (5)0.032 (5)0.000 (4)−0.017 (4)−0.006 (4)
C60.024 (5)0.020 (5)0.047 (6)0.000 (4)−0.019 (4)−0.004 (4)
C70.016 (4)0.037 (6)0.020 (4)−0.007 (4)−0.004 (3)−0.004 (4)
C80.023 (5)0.031 (6)0.028 (5)−0.008 (4)−0.009 (4)0.007 (4)
C90.027 (5)0.034 (6)0.025 (5)−0.006 (4)−0.008 (4)−0.003 (4)
C100.042 (6)0.024 (5)0.028 (5)−0.010 (5)0.000 (4)−0.006 (4)
C110.014 (4)0.035 (6)0.024 (5)−0.005 (4)−0.004 (4)0.000 (4)
C120.018 (4)0.018 (5)0.023 (4)−0.005 (4)−0.004 (3)0.002 (3)
O10.085 (7)0.052 (6)0.058 (6)0.005 (5)−0.005 (5)0.003 (5)

Geometric parameters (Å, °)

Pt1—Br12.4755 (9)C4—C51.421 (12)
Pt1—Br22.4743 (9)C5—C61.353 (13)
Pt1—Br32.4725 (9)C5—H50.9500
N1—C11.319 (12)C6—C71.436 (12)
N1—C121.358 (11)C6—H60.9500
N1—H110.8800C7—C111.411 (13)
N2—C101.321 (12)C7—C81.417 (12)
N2—C111.371 (12)C8—C91.354 (13)
C1—C21.391 (15)C8—H80.9500
C1—H10.9500C9—C101.420 (14)
C2—C31.377 (15)C9—H90.9500
C2—H20.9500C10—H100.9500
C3—C41.411 (12)C11—C121.434 (12)
C3—H30.9500O1—H211.01
C4—C121.409 (12)O1—H221.04
Br3i—Pt1—Br3180.0C12—C4—C3118.5 (8)
Br3i—Pt1—Br290.59 (3)C12—C4—C5119.3 (8)
Br3—Pt1—Br289.41 (3)C3—C4—C5122.2 (8)
Br3i—Pt1—Br2i89.41 (3)C6—C5—C4121.0 (8)
Br3—Pt1—Br2i90.59 (3)C6—C5—H5119.5
Br2—Pt1—Br2i180.00 (2)C4—C5—H5119.5
Br3i—Pt1—Br190.44 (3)C5—C6—C7120.9 (9)
Br3—Pt1—Br189.56 (3)C5—C6—H6119.6
Br2—Pt1—Br189.99 (3)C7—C6—H6119.6
Br2i—Pt1—Br190.01 (3)C11—C7—C8117.5 (8)
Br3i—Pt1—Br1i89.56 (3)C11—C7—C6119.8 (8)
Br3—Pt1—Br1i90.44 (3)C8—C7—C6122.6 (9)
Br2—Pt1—Br1i90.01 (3)C9—C8—C7119.4 (9)
Br2i—Pt1—Br1i89.99 (3)C9—C8—H8120.3
Br1—Pt1—Br1i180.000 (1)C7—C8—H8120.3
C1—N1—C12124.0 (9)C8—C9—C10118.7 (9)
C1—N1—H11118.0C8—C9—H9120.6
C12—N1—H11118.0C10—C9—H9120.6
C10—N2—C11116.2 (8)N2—C10—C9124.7 (9)
N1—C1—C2120.6 (10)N2—C10—H10117.7
N1—C1—H1119.7C9—C10—H10117.7
C2—C1—H1119.7N2—C11—C7123.5 (8)
C3—C2—C1118.3 (9)N2—C11—C12118.1 (8)
C3—C2—H2120.8C7—C11—C12118.4 (8)
C1—C2—H2120.8N1—C12—C4117.8 (8)
C2—C3—C4120.7 (9)N1—C12—C11121.7 (8)
C2—C3—H3119.6C4—C12—C11120.5 (8)
C4—C3—H3119.6H21—O1—H22119.7
C12—N1—C1—C2−2.9 (14)C10—N2—C11—C12179.9 (8)
N1—C1—C2—C31.3 (14)C8—C7—C11—N2−0.7 (12)
C1—C2—C3—C4−0.7 (14)C6—C7—C11—N2177.7 (8)
C2—C3—C4—C121.6 (13)C8—C7—C11—C12179.5 (7)
C2—C3—C4—C5−176.9 (9)C6—C7—C11—C12−2.0 (12)
C12—C4—C5—C60.3 (13)C1—N1—C12—C43.7 (13)
C3—C4—C5—C6178.8 (9)C1—N1—C12—C11−178.4 (8)
C4—C5—C6—C70.8 (14)C3—C4—C12—N1−2.9 (12)
C5—C6—C7—C110.1 (13)C5—C4—C12—N1175.6 (8)
C5—C6—C7—C8178.4 (9)C3—C4—C12—C11179.1 (8)
C11—C7—C8—C90.4 (12)C5—C4—C12—C11−2.4 (12)
C6—C7—C8—C9−177.9 (8)N2—C11—C12—N15.5 (12)
C7—C8—C9—C100.3 (13)C7—C11—C12—N1−174.7 (8)
C11—N2—C10—C90.7 (13)N2—C11—C12—C4−176.6 (8)
C8—C9—C10—N2−0.9 (14)C7—C11—C12—C43.2 (12)
C10—N2—C11—C70.1 (12)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H11···O1ii0.882.002.741 (12)142
O1—H21···Br1iii1.012.633.463 (9)139
O1—H22···N2iv1.042.282.890 (12)116

Symmetry codes: (ii) x+1, y−1, z; (iii) x, y+1, z−1; (iv) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2266).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Grundy, H. D. & Brown, I. D. (1970). Can. J. Chem.48, 1151–1154.
  • Hu, J. J., Li, F. & Andy Hor, T. S. (2009). Organometallics, 28, 1212–1220.
  • Liptay, G., Zsakó, J., Várhelyi, Cs. & Novák, Cs. (1992). J. Therm. Anal.38, 2301–2310.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yusenko, K. V., Gromilov, S. A., Baidina, I. A., Shubin, Yu. V., Korol’kov, I. V., Drebushchak, T. N., Basova, T. V. & Korenev, S. V. (2002). J. Struct. Chem.43, 649–655.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography