PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o434.
Published online 2010 January 23. doi:  10.1107/S1600536810002291
PMCID: PMC2979874

N-(3-Methyl­phen­yl)benzene­sulfonamide

Abstract

The asymmetric unit of the title compound, C13H13NO2S, contains two independent mol­ecules. The dihedral angles between the two aromatic rings are 67.9 (1) and 68.6 (1)° in the two mol­ecules. In the crystal, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains.

Related literature

For the preparation of the title compound, see: Gowda et al. (2005 [triangle]). For related structures, see: Gelbrich et al. (2007 [triangle]; Gowda et al. (2008 [triangle]); Nirmala et al. (2009 [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o434-scheme1.jpg

Experimental

Crystal data

  • C13H13NO2S
  • M r = 247.30
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o434-efi1.jpg
  • a = 8.787 (1) Å
  • b = 8.884 (1) Å
  • c = 32.406 (3) Å
  • V = 2529.7 (5) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 2.19 mm−1
  • T = 299 K
  • 0.60 × 0.60 × 0.35 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.353, T max = 0.514
  • 3284 measured reflections
  • 3109 independent reflections
  • 3002 reflections with I > 2σ(I)
  • R int = 0.039
  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.096
  • S = 1.01
  • 3109 reflections
  • 316 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.36 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 507 Friedel pairs
  • Flack parameter: −0.010 (17)

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002291/bt5172sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002291/bt5172Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In the present work, as a part of studying the effect of substituents on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008; Nirmala et al., 2009), the structure of N-(3-methylphenyl)benzenesulfonamide (I) has been determined. The asymmetric unit of (I) contains two independent molecules (Fig. 1). The conformations of the N—H bonds are syn to the meta- methyl groups in the aniline benzene rings, in contrast to the anti conformation observed with respect to the ortho-methyl group in N-(2-methylphenyl)benzenesulfonamide (II), to the meta-chloro group in N-(3-chlorophenyl)benzenesulfonamide(III)(Gowda et al., 2008) and to the meta-methyl group in 4-methyl-N-(3-methylphenyl)benzenesulfonamide (IV) (Nirmala et al., 2009).

The two benzene rings in (I) are tilted relative to each other by 67.9 (1)° in molecule 1 and 68.6 (1)° in molecule 2, compared to the values of 61.5 (1)° in (II), 65.4 (1)° in (III) and 83.9 (1)° in (IV),

The other bond parameters are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing stabilized by intermolecular N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

The solution of benzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with m-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(3-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005).

The single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement

The H atoms of the NH groups were located in a difference map and their positional parameters were refined. The H-atoms bonded to C were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C13H13NO2SF(000) = 1040
Mr = 247.30Dx = 1.299 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 8.787 (1) Åθ = 6.5–20.2°
b = 8.884 (1) ŵ = 2.19 mm1
c = 32.406 (3) ÅT = 299 K
V = 2529.7 (5) Å3Prism, colourless
Z = 80.60 × 0.60 × 0.35 mm

Data collection

Enraf–Nonius CAD-4 diffractometer3002 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
graphiteθmax = 66.9°, θmin = 2.7°
ω/2θ scansh = −10→0
Absorption correction: ψ scan (North et al., 1968)k = −10→1
Tmin = 0.353, Tmax = 0.514l = −38→4
3284 measured reflections3 standard reflections every 120 min
3109 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033w = 1/[σ2(Fo2) + (0.0669P)2 + 0.4153P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.18 e Å3
3109 reflectionsΔρmin = −0.36 e Å3
316 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0203 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 507 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.010 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.24673 (6)0.87533 (7)0.002545 (17)0.05084 (19)
O10.08754 (19)0.8919 (2)0.01175 (6)0.0660 (5)
O20.2926 (2)0.8620 (3)−0.03936 (5)0.0675 (5)
N10.3085 (2)0.7245 (3)0.02524 (6)0.0534 (5)
H1N0.394 (4)0.710 (4)0.0126 (9)0.064*
C10.3398 (3)1.0308 (3)0.02455 (8)0.0548 (6)
C20.4797 (4)1.0708 (4)0.00878 (10)0.0740 (8)
H20.52411.0147−0.01230.089*
C30.5529 (6)1.1951 (5)0.02461 (13)0.1007 (13)
H30.64751.22320.01440.121*
C40.4868 (7)1.2767 (5)0.05524 (16)0.1167 (17)
H40.53631.36150.06530.140*
C50.3486 (6)1.2364 (5)0.07158 (15)0.1124 (15)
H50.30541.29240.09280.135*
C60.2731 (4)1.1093 (4)0.05579 (10)0.0816 (9)
H60.17951.07940.06650.098*
C70.3008 (3)0.7054 (3)0.06911 (7)0.0502 (5)
C80.4334 (3)0.6721 (3)0.09016 (8)0.0563 (6)
H80.52540.66880.07600.068*
C90.4301 (4)0.6434 (4)0.13244 (8)0.0675 (7)
C100.2930 (4)0.6565 (4)0.15269 (9)0.0758 (9)
H100.28910.64030.18100.091*
C110.1614 (4)0.6932 (4)0.13180 (10)0.0793 (9)
H110.07060.70340.14620.095*
C120.1636 (3)0.7147 (4)0.08980 (9)0.0671 (7)
H120.07410.73520.07550.081*
C130.5728 (5)0.6023 (6)0.15481 (11)0.0973 (12)
H13A0.59270.49680.15130.117*
H13B0.56120.62420.18360.117*
H13C0.65640.65940.14390.117*
S20.11402 (7)0.27358 (7)0.246445 (17)0.05112 (19)
O30.1367 (2)0.4283 (2)0.23607 (6)0.0637 (5)
O40.0977 (2)0.2326 (2)0.28860 (5)0.0676 (5)
N2−0.0417 (2)0.2159 (3)0.22416 (6)0.0527 (5)
H2N−0.065 (4)0.136 (4)0.2348 (8)0.063*
C140.2668 (3)0.1716 (3)0.22523 (7)0.0532 (6)
C150.2926 (3)0.0270 (4)0.23940 (9)0.0674 (7)
H150.2299−0.01570.25930.081*
C160.4143 (5)−0.0526 (4)0.22311 (12)0.0902 (10)
H160.4344−0.14970.23230.108*
C170.5046 (4)0.0106 (5)0.19371 (14)0.0998 (13)
H170.5863−0.04380.18320.120*
C180.4775 (5)0.1509 (6)0.17945 (14)0.1068 (14)
H180.53960.19130.15900.128*
C190.3571 (4)0.2356 (4)0.19508 (10)0.0821 (9)
H190.33810.33240.18550.099*
C20−0.0626 (3)0.2246 (3)0.18014 (7)0.0504 (5)
C21−0.1049 (3)0.0949 (3)0.15949 (8)0.0539 (6)
H21−0.11180.00460.17390.065*
C22−0.1374 (3)0.0981 (4)0.11760 (8)0.0609 (6)
C23−0.1195 (4)0.2328 (4)0.09707 (9)0.0729 (8)
H23−0.13690.23690.06880.087*
C24−0.0769 (5)0.3601 (4)0.11743 (10)0.0847 (10)
H24−0.06610.44960.10280.102*
C25−0.0492 (4)0.3584 (4)0.15961 (9)0.0705 (8)
H25−0.02230.44600.17350.085*
C26−0.1914 (5)−0.0405 (4)0.09576 (11)0.0861 (10)
H26A−0.1587−0.12800.11070.103*
H26B−0.1496−0.04290.06840.103*
H26C−0.3005−0.03940.09420.103*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0439 (3)0.0637 (3)0.0449 (3)−0.0013 (3)−0.0050 (2)−0.0031 (3)
O10.0395 (8)0.0884 (13)0.0702 (11)0.0026 (9)−0.0048 (8)−0.0042 (11)
O20.0692 (12)0.0883 (13)0.0450 (8)−0.0003 (11)−0.0035 (8)−0.0041 (10)
N10.0497 (10)0.0613 (12)0.0492 (10)0.0043 (10)0.0060 (9)−0.0033 (10)
C10.0554 (14)0.0568 (13)0.0523 (13)−0.0011 (12)−0.0138 (11)0.0063 (12)
C20.0700 (17)0.0829 (19)0.0690 (18)−0.0202 (17)−0.0053 (14)0.0104 (16)
C30.107 (3)0.095 (3)0.101 (3)−0.044 (2)−0.021 (2)0.017 (2)
C40.139 (4)0.073 (2)0.138 (4)−0.029 (3)−0.054 (3)0.003 (3)
C50.130 (4)0.090 (3)0.117 (3)0.014 (3)−0.031 (3)−0.038 (3)
C60.083 (2)0.082 (2)0.0793 (18)0.0032 (19)−0.0102 (17)−0.0229 (18)
C70.0525 (12)0.0477 (12)0.0503 (11)−0.0035 (11)0.0060 (10)−0.0011 (11)
C80.0538 (14)0.0587 (14)0.0564 (13)−0.0038 (12)0.0040 (11)0.0002 (12)
C90.0789 (18)0.0656 (17)0.0580 (14)−0.0086 (16)−0.0088 (14)0.0048 (14)
C100.097 (2)0.0811 (19)0.0496 (13)−0.0142 (19)0.0120 (15)0.0081 (15)
C110.078 (2)0.091 (2)0.0682 (17)−0.0070 (19)0.0266 (16)0.0095 (17)
C120.0560 (14)0.0802 (18)0.0651 (15)−0.0021 (15)0.0115 (13)0.0086 (15)
C130.093 (3)0.120 (3)0.079 (2)0.001 (3)−0.0190 (19)0.022 (2)
S20.0540 (3)0.0561 (3)0.0432 (3)0.0010 (3)0.0032 (2)−0.0055 (2)
O30.0722 (12)0.0541 (9)0.0649 (11)−0.0015 (9)0.0044 (9)−0.0077 (8)
O40.0777 (12)0.0808 (12)0.0444 (8)0.0005 (12)0.0036 (8)−0.0037 (9)
N20.0503 (10)0.0584 (11)0.0493 (10)−0.0057 (10)0.0036 (9)0.0040 (10)
C140.0456 (12)0.0639 (14)0.0500 (12)0.0015 (11)−0.0032 (11)−0.0098 (11)
C150.0641 (17)0.0689 (16)0.0693 (16)0.0066 (14)0.0029 (13)−0.0031 (15)
C160.086 (2)0.077 (2)0.107 (3)0.025 (2)−0.005 (2)−0.007 (2)
C170.068 (2)0.106 (3)0.125 (3)0.024 (2)0.017 (2)−0.020 (3)
C180.082 (2)0.119 (3)0.119 (3)0.020 (3)0.045 (2)0.011 (3)
C190.0743 (19)0.085 (2)0.087 (2)0.0097 (19)0.0281 (17)0.0082 (19)
C200.0423 (11)0.0606 (14)0.0483 (11)0.0029 (11)0.0021 (9)0.0032 (12)
C210.0503 (12)0.0555 (13)0.0561 (12)0.0054 (12)0.0044 (11)0.0010 (11)
C220.0504 (13)0.0743 (16)0.0579 (13)0.0047 (13)0.0017 (11)−0.0086 (13)
C230.0739 (18)0.093 (2)0.0519 (13)−0.009 (2)−0.0078 (13)0.0054 (15)
C240.100 (3)0.087 (2)0.0675 (17)−0.018 (2)−0.0173 (18)0.0265 (17)
C250.085 (2)0.0646 (16)0.0625 (15)−0.0112 (16)−0.0115 (15)0.0075 (14)
C260.097 (2)0.082 (2)0.0790 (19)0.002 (2)−0.0076 (19)−0.0239 (18)

Geometric parameters (Å, °)

S1—O21.4214 (18)S2—O41.4212 (18)
S1—O11.4378 (18)S2—O31.429 (2)
S1—N11.622 (2)S2—N21.630 (2)
S1—C11.756 (3)S2—C141.760 (3)
N1—C71.433 (3)N2—C201.440 (3)
N1—H1N0.87 (3)N2—H2N0.82 (3)
C1—C61.362 (4)C14—C191.381 (4)
C1—C21.379 (4)C14—C151.383 (4)
C2—C31.377 (5)C15—C161.386 (5)
C2—H20.9300C15—H150.9300
C3—C41.359 (6)C16—C171.361 (6)
C3—H30.9300C16—H160.9300
C4—C51.373 (7)C17—C181.350 (6)
C4—H40.9300C17—H170.9300
C5—C61.406 (6)C18—C191.393 (5)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—H190.9300
C7—C121.382 (4)C20—C251.367 (4)
C7—C81.382 (4)C20—C211.383 (4)
C8—C91.394 (3)C21—C221.387 (3)
C8—H80.9300C21—H210.9300
C9—C101.377 (5)C22—C231.378 (4)
C9—C131.494 (5)C22—C261.497 (4)
C10—C111.379 (5)C23—C241.362 (5)
C10—H100.9300C23—H230.9300
C11—C121.375 (4)C24—C251.388 (4)
C11—H110.9300C24—H240.9300
C12—H120.9300C25—H250.9300
C13—H13A0.9600C26—H26A0.9600
C13—H13B0.9600C26—H26B0.9600
C13—H13C0.9600C26—H26C0.9600
O2—S1—O1118.86 (11)O4—S2—O3119.12 (12)
O2—S1—N1105.62 (12)O4—S2—N2105.12 (12)
O1—S1—N1108.43 (12)O3—S2—N2108.38 (12)
O2—S1—C1108.75 (13)O4—S2—C14108.70 (12)
O1—S1—C1106.75 (13)O3—S2—C14107.27 (12)
N1—S1—C1108.04 (11)N2—S2—C14107.80 (12)
C7—N1—S1122.14 (18)C20—N2—S2121.91 (17)
C7—N1—H1N119.3 (19)C20—N2—H2N116 (2)
S1—N1—H1N102 (2)S2—N2—H2N107 (2)
C6—C1—C2121.8 (3)C19—C14—C15121.6 (3)
C6—C1—S1120.3 (2)C19—C14—S2120.2 (2)
C2—C1—S1117.9 (2)C15—C14—S2118.3 (2)
C3—C2—C1119.0 (4)C14—C15—C16118.3 (3)
C3—C2—H2120.5C14—C15—H15120.9
C1—C2—H2120.5C16—C15—H15120.9
C4—C3—C2120.0 (4)C17—C16—C15120.4 (4)
C4—C3—H3120.0C17—C16—H16119.8
C2—C3—H3120.0C15—C16—H16119.8
C3—C4—C5121.4 (4)C18—C17—C16121.1 (4)
C3—C4—H4119.3C18—C17—H17119.4
C5—C4—H4119.3C16—C17—H17119.4
C4—C5—C6119.1 (4)C17—C18—C19120.5 (4)
C4—C5—H5120.4C17—C18—H18119.7
C6—C5—H5120.4C19—C18—H18119.7
C1—C6—C5118.6 (4)C14—C19—C18118.1 (4)
C1—C6—H6120.7C14—C19—H19121.0
C5—C6—H6120.7C18—C19—H19121.0
C12—C7—C8120.6 (2)C25—C20—C21120.8 (2)
C12—C7—N1121.0 (2)C25—C20—N2121.2 (3)
C8—C7—N1118.4 (2)C21—C20—N2117.9 (2)
C7—C8—C9120.5 (3)C20—C21—C22120.8 (2)
C7—C8—H8119.8C20—C21—H21119.6
C9—C8—H8119.8C22—C21—H21119.6
C10—C9—C8118.1 (3)C23—C22—C21117.8 (3)
C10—C9—C13121.6 (3)C23—C22—C26121.5 (3)
C8—C9—C13120.3 (3)C21—C22—C26120.7 (3)
C9—C10—C11121.3 (2)C24—C23—C22121.2 (3)
C9—C10—H10119.4C24—C23—H23119.4
C11—C10—H10119.4C22—C23—H23119.4
C12—C11—C10120.5 (3)C23—C24—C25121.1 (3)
C12—C11—H11119.7C23—C24—H24119.5
C10—C11—H11119.7C25—C24—H24119.5
C11—C12—C7118.9 (3)C20—C25—C24118.3 (3)
C11—C12—H12120.5C20—C25—H25120.9
C7—C12—H12120.5C24—C25—H25120.9
C9—C13—H13A109.5C22—C26—H26A109.5
C9—C13—H13B109.5C22—C26—H26B109.5
H13A—C13—H13B109.5H26A—C26—H26B109.5
C9—C13—H13C109.5C22—C26—H26C109.5
H13A—C13—H13C109.5H26A—C26—H26C109.5
H13B—C13—H13C109.5H26B—C26—H26C109.5
O2—S1—N1—C7172.1 (2)O4—S2—N2—C20−174.2 (2)
O1—S1—N1—C7−59.5 (2)O3—S2—N2—C2057.4 (2)
C1—S1—N1—C755.8 (2)C14—S2—N2—C20−58.4 (3)
O2—S1—C1—C6150.7 (2)O4—S2—C14—C19−146.4 (3)
O1—S1—C1—C621.3 (3)O3—S2—C14—C19−16.4 (3)
N1—S1—C1—C6−95.2 (3)N2—S2—C14—C19100.1 (3)
O2—S1—C1—C2−28.4 (3)O4—S2—C14—C1533.9 (2)
O1—S1—C1—C2−157.8 (2)O3—S2—C14—C15163.9 (2)
N1—S1—C1—C285.8 (2)N2—S2—C14—C15−79.6 (2)
C6—C1—C2—C3−1.1 (5)C19—C14—C15—C161.2 (4)
S1—C1—C2—C3178.0 (3)S2—C14—C15—C16−179.1 (3)
C1—C2—C3—C4−0.3 (5)C14—C15—C16—C17−0.5 (5)
C2—C3—C4—C51.3 (7)C15—C16—C17—C18−0.6 (7)
C3—C4—C5—C6−1.0 (7)C16—C17—C18—C191.0 (8)
C2—C1—C6—C51.4 (5)C15—C14—C19—C18−0.8 (5)
S1—C1—C6—C5−177.7 (3)S2—C14—C19—C18179.5 (3)
C4—C5—C6—C1−0.3 (6)C17—C18—C19—C14−0.3 (7)
S1—N1—C7—C1257.0 (3)S2—N2—C20—C25−56.3 (3)
S1—N1—C7—C8−125.3 (2)S2—N2—C20—C21127.3 (2)
C12—C7—C8—C91.7 (4)C25—C20—C21—C22−1.1 (4)
N1—C7—C8—C9−176.1 (3)N2—C20—C21—C22175.4 (2)
C7—C8—C9—C10−3.1 (5)C20—C21—C22—C232.8 (4)
C7—C8—C9—C13177.9 (3)C20—C21—C22—C26−176.7 (3)
C8—C9—C10—C111.6 (5)C21—C22—C23—C24−2.4 (5)
C13—C9—C10—C11−179.4 (4)C26—C22—C23—C24177.1 (3)
C9—C10—C11—C121.3 (6)C22—C23—C24—C250.3 (6)
C10—C11—C12—C7−2.8 (5)C21—C20—C25—C24−1.0 (5)
C8—C7—C12—C111.2 (5)N2—C20—C25—C24−177.4 (3)
N1—C7—C12—C11178.9 (3)C23—C24—C25—C201.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.87 (3)2.08 (3)2.919 (3)162 (3)
N2—H2N···O3ii0.82 (3)2.17 (3)2.981 (3)178 (3)

Symmetry codes: (i) x+1/2, −y+3/2, −z; (ii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5172).

References

  • Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1825. [PMC free article] [PubMed]
  • Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.
  • Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3208. [PMC free article] [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography