PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o304.
Published online 2010 January 9. doi:  10.1107/S1600536810000218
PMCID: PMC2979872

6-Chloro-3-[5-(4-fluoro­phen­yl)-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl]-2-methyl-4-phenyl­quinoline

Abstract

In the title compound, C31H23ClFN3, the pyrazole ring forms dihedral angles of 72.75 (7), 18.08 (9) and 86.26 (9)° with the quinoline ring system, the phenyl ring and the fluoro­phenyl ring, respectively. In the crystal, inter­molecular C—H(...)N hydrogen bonds link the mol­ecules into chains propagating along the c axis. The crystal structure is further stabilized by C—H(...)π inter­actions.

Related literature

For a related structure and background to quinolines and pyrazolines, see: Loh et al. (2009 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o304-scheme1.jpg

Experimental

Crystal data

  • C31H23ClFN3
  • M r = 491.97
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o304-efi1.jpg
  • a = 9.4303 (2) Å
  • b = 28.2155 (6) Å
  • c = 9.6028 (2) Å
  • β = 106.636 (1)°
  • V = 2448.17 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.19 mm−1
  • T = 100 K
  • 0.49 × 0.23 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.914, T max = 0.973
  • 38888 measured reflections
  • 8947 independent reflections
  • 6981 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.171
  • S = 1.08
  • 8947 reflections
  • 326 parameters
  • H-atom parameters constrained
  • Δρmax = 0.78 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810000218/hb5303sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000218/hb5303Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks Malaysian government and USM for the award of the post of Assistant Research Officer under Research University Golden Goose Grant (1001/PFIZIK/811012). VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

As part of our onging studies of substituted pyrazoline derivatives (Loh et al., 2009), we now report the synthesis and structure of the title compound, (I).

The pyrazole ring (C16–C18/N2/N3) in (I) forms dihedral angles of 72.75 (7), 18.08 (9) and 86.26 (9) ° with the quinoline ring system (C1–C9/N1), phenyl (C25–C30) and fluorophenyl (C19–C24) rings, respectively. The quinoline ring system is approximately planar with a maximum deviation of 0.025 (2) Å at atom C9. Bond lengths and angles observed are comparable to a related structure (Loh et al., 2009).

In the crystal packing, intermolecular C15—H15A···N1 hydrogen bonds link the molecules into extended one-dimensional chains along c axis. The crystal structure is further stabilized by C—H···π interactions.

Experimental

A mixture of 1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3-(4-flourophenyl) prop-2-en-1-one (0.001 M) and phenyl hydrazine in (0.007 M) in distilled methanol was refluxed for about 8 h. The resulting mixture was concentrated to remove methanol then poured on to ice and neutralized with diluted HCl. The resultant solid was filtered, dried and purified by column chromatography using 1:1 mixture of chloroform and petroleum ether. The compound was recrystallized from methanol to yield yellow blocks of (I). M. p.: 433–435 K, yield: 60%.

Refinement

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids.
Fig. 2.
The crystal packing of (I), showing extended one-dimensional chains along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C31H23ClFN3F(000) = 1024
Mr = 491.97Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9957 reflections
a = 9.4303 (2) Åθ = 2.3–31.9°
b = 28.2155 (6) ŵ = 0.19 mm1
c = 9.6028 (2) ÅT = 100 K
β = 106.636 (1)°Block, yellow
V = 2448.17 (9) Å30.49 × 0.23 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer8947 independent reflections
Radiation source: fine-focus sealed tube6981 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 32.7°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −14→14
Tmin = 0.914, Tmax = 0.973k = −42→33
38888 measured reflectionsl = −14→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0749P)2 + 1.6204P] where P = (Fo2 + 2Fc2)/3
8947 reflections(Δ/σ)max < 0.001
326 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.17020 (5)0.245611 (18)0.84092 (5)0.03203 (12)
F10.83364 (15)−0.06367 (4)0.85393 (14)0.0396 (3)
N10.30003 (16)0.28484 (5)0.56387 (15)0.0211 (3)
N20.48193 (15)0.15134 (5)0.42869 (15)0.0202 (3)
N30.59506 (15)0.11718 (5)0.45432 (14)0.0206 (3)
C10.38175 (18)0.25044 (6)0.53450 (17)0.0197 (3)
C20.19192 (18)0.27355 (5)0.62820 (18)0.0198 (3)
C30.1078 (2)0.31116 (6)0.6618 (2)0.0263 (3)
H3A0.12690.34220.63960.032*
C4−0.0011 (2)0.30245 (6)0.7265 (2)0.0278 (4)
H4A−0.05510.32730.74940.033*
C5−0.03054 (19)0.25528 (6)0.75826 (19)0.0235 (3)
C60.04711 (18)0.21773 (6)0.72696 (18)0.0211 (3)
H6A0.02480.18700.74840.025*
C70.16176 (16)0.22620 (5)0.66153 (16)0.0174 (3)
C80.25181 (16)0.18942 (5)0.62996 (16)0.0170 (3)
C90.36189 (17)0.20185 (5)0.56766 (16)0.0173 (3)
C100.23459 (16)0.13863 (5)0.66548 (17)0.0175 (3)
C110.20683 (18)0.10451 (6)0.55481 (18)0.0218 (3)
H11A0.18740.11390.45840.026*
C120.20828 (19)0.05650 (6)0.5891 (2)0.0263 (3)
H12A0.18700.03400.51540.032*
C130.2413 (2)0.04223 (6)0.7329 (2)0.0274 (4)
H13A0.24700.01010.75580.033*
C140.26595 (19)0.07580 (6)0.8428 (2)0.0244 (3)
H14A0.28630.06610.93910.029*
C150.26037 (17)0.12397 (6)0.80953 (18)0.0201 (3)
H15A0.27380.14640.88330.024*
C160.47176 (17)0.16606 (5)0.55166 (17)0.0179 (3)
C170.58110 (18)0.14337 (6)0.68073 (17)0.0230 (3)
H17A0.53260.12150.73010.028*
H17B0.63420.16700.74940.028*
C180.68460 (17)0.11731 (6)0.60858 (17)0.0193 (3)
H18A0.77470.13600.61950.023*
C190.72498 (17)0.06821 (6)0.67002 (17)0.0194 (3)
C200.86967 (18)0.05790 (6)0.74894 (17)0.0206 (3)
H20A0.94260.08090.75960.025*
C210.90692 (19)0.01333 (6)0.81253 (18)0.0235 (3)
H21A1.00370.00640.86560.028*
C220.7969 (2)−0.01989 (6)0.7946 (2)0.0268 (4)
C230.6518 (2)−0.01129 (7)0.7168 (2)0.0320 (4)
H23A0.5797−0.03460.70620.038*
C240.61669 (19)0.03317 (7)0.6547 (2)0.0276 (4)
H24A0.51950.03980.60210.033*
C250.65853 (18)0.10922 (6)0.34114 (17)0.0192 (3)
C260.5758 (2)0.11696 (7)0.19626 (19)0.0267 (3)
H26A0.48050.12930.17510.032*
C270.6368 (2)0.10606 (7)0.0851 (2)0.0304 (4)
H27A0.58120.1110−0.01070.037*
C280.7796 (2)0.08782 (6)0.1134 (2)0.0269 (4)
H28A0.81910.08050.03770.032*
C290.86119 (19)0.08080 (6)0.25647 (18)0.0216 (3)
H29A0.95710.06910.27680.026*
C300.80235 (17)0.09098 (5)0.37050 (18)0.0193 (3)
H30A0.85830.08570.46600.023*
C310.5017 (2)0.26415 (6)0.4675 (2)0.0254 (3)
H31A0.50070.29790.45390.038*
H31B0.48510.24860.37530.038*
H31C0.59610.25470.53070.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0240 (2)0.0383 (3)0.0390 (3)0.00459 (17)0.01745 (18)−0.00127 (19)
F10.0510 (8)0.0263 (6)0.0492 (7)0.0099 (5)0.0267 (6)0.0157 (5)
N10.0244 (6)0.0182 (6)0.0218 (6)0.0019 (5)0.0085 (5)0.0027 (5)
N20.0189 (6)0.0219 (6)0.0206 (6)0.0059 (5)0.0070 (5)0.0023 (5)
N30.0203 (6)0.0259 (7)0.0159 (6)0.0081 (5)0.0057 (5)0.0012 (5)
C10.0216 (7)0.0195 (7)0.0187 (7)0.0014 (5)0.0072 (6)0.0028 (5)
C20.0222 (7)0.0161 (7)0.0218 (7)0.0020 (5)0.0075 (6)0.0007 (5)
C30.0319 (9)0.0167 (7)0.0335 (9)0.0054 (6)0.0145 (7)0.0009 (6)
C40.0307 (9)0.0219 (8)0.0334 (9)0.0078 (7)0.0134 (7)−0.0018 (7)
C50.0207 (7)0.0267 (8)0.0252 (8)0.0046 (6)0.0097 (6)−0.0012 (6)
C60.0200 (7)0.0202 (7)0.0244 (7)0.0023 (6)0.0085 (6)0.0005 (6)
C70.0175 (6)0.0156 (6)0.0196 (7)0.0026 (5)0.0061 (5)0.0004 (5)
C80.0170 (6)0.0159 (6)0.0181 (6)0.0012 (5)0.0048 (5)−0.0009 (5)
C90.0180 (6)0.0176 (6)0.0166 (6)0.0037 (5)0.0054 (5)0.0014 (5)
C100.0160 (6)0.0142 (6)0.0231 (7)−0.0003 (5)0.0070 (5)−0.0025 (5)
C110.0202 (7)0.0220 (7)0.0231 (7)−0.0013 (6)0.0058 (6)−0.0048 (6)
C120.0242 (8)0.0200 (7)0.0365 (9)−0.0059 (6)0.0117 (7)−0.0105 (7)
C130.0268 (8)0.0172 (7)0.0422 (10)−0.0036 (6)0.0162 (8)−0.0012 (7)
C140.0259 (8)0.0209 (7)0.0288 (8)−0.0012 (6)0.0115 (7)0.0039 (6)
C150.0211 (7)0.0181 (7)0.0229 (7)−0.0018 (6)0.0091 (6)−0.0020 (6)
C160.0171 (6)0.0179 (7)0.0196 (7)0.0021 (5)0.0065 (5)0.0009 (5)
C170.0227 (7)0.0287 (8)0.0171 (7)0.0083 (6)0.0051 (6)−0.0009 (6)
C180.0174 (6)0.0227 (7)0.0175 (7)0.0032 (5)0.0043 (5)−0.0001 (6)
C190.0188 (7)0.0231 (7)0.0176 (7)0.0027 (6)0.0072 (5)0.0009 (5)
C200.0200 (7)0.0234 (7)0.0184 (7)0.0021 (6)0.0053 (6)−0.0001 (6)
C210.0247 (8)0.0261 (8)0.0199 (7)0.0054 (6)0.0064 (6)0.0030 (6)
C220.0352 (9)0.0229 (8)0.0267 (8)0.0055 (7)0.0157 (7)0.0071 (6)
C230.0297 (9)0.0296 (9)0.0397 (10)−0.0053 (7)0.0146 (8)0.0029 (8)
C240.0199 (7)0.0304 (9)0.0320 (9)−0.0005 (7)0.0066 (7)0.0016 (7)
C250.0217 (7)0.0191 (7)0.0185 (7)0.0020 (5)0.0086 (6)−0.0007 (5)
C260.0256 (8)0.0335 (9)0.0216 (8)0.0065 (7)0.0076 (6)0.0012 (7)
C270.0329 (9)0.0391 (10)0.0201 (8)0.0052 (8)0.0088 (7)0.0013 (7)
C280.0338 (9)0.0268 (8)0.0256 (8)0.0018 (7)0.0170 (7)−0.0025 (7)
C290.0239 (7)0.0179 (7)0.0261 (8)0.0006 (6)0.0122 (6)−0.0013 (6)
C300.0193 (7)0.0179 (7)0.0219 (7)0.0010 (5)0.0082 (6)−0.0009 (5)
C310.0261 (8)0.0247 (8)0.0291 (8)0.0012 (6)0.0137 (7)0.0054 (7)

Geometric parameters (Å, °)

Cl1—C51.7429 (17)C14—H14A0.9300
F1—C221.363 (2)C15—H15A0.9300
N1—C11.319 (2)C16—C171.509 (2)
N1—C21.372 (2)C17—C181.536 (2)
N2—C161.281 (2)C17—H17A0.9700
N2—N31.4062 (18)C17—H17B0.9700
N3—C251.4009 (19)C18—C191.511 (2)
N3—C181.480 (2)C18—H18A0.9800
C1—C91.432 (2)C19—C201.389 (2)
C1—C311.503 (2)C19—C241.399 (2)
C2—C31.417 (2)C20—C211.398 (2)
C2—C71.421 (2)C20—H20A0.9300
C3—C41.366 (2)C21—C221.372 (3)
C3—H3A0.9300C21—H21A0.9300
C4—C51.411 (3)C22—C231.380 (3)
C4—H4A0.9300C23—C241.387 (3)
C5—C61.369 (2)C23—H23A0.9300
C6—C71.418 (2)C24—H24A0.9300
C6—H6A0.9300C25—C301.402 (2)
C7—C81.427 (2)C25—C261.404 (2)
C8—C91.384 (2)C26—C271.385 (2)
C8—C101.493 (2)C26—H26A0.9300
C9—C161.486 (2)C27—C281.393 (3)
C10—C151.397 (2)C27—H27A0.9300
C10—C111.402 (2)C28—C291.384 (3)
C11—C121.393 (2)C28—H28A0.9300
C11—H11A0.9300C29—C301.392 (2)
C12—C131.386 (3)C29—H29A0.9300
C12—H12A0.9300C30—H30A0.9300
C13—C141.387 (3)C31—H31A0.9600
C13—H13A0.9300C31—H31B0.9600
C14—C151.393 (2)C31—H31C0.9600
C1—N1—C2118.69 (14)C16—C17—H17A111.4
C16—N2—N3108.31 (13)C18—C17—H17A111.4
C25—N3—N2116.45 (12)C16—C17—H17B111.4
C25—N3—C18121.92 (13)C18—C17—H17B111.4
N2—N3—C18111.12 (12)H17A—C17—H17B109.3
N1—C1—C9122.37 (14)N3—C18—C19113.35 (13)
N1—C1—C31117.34 (14)N3—C18—C17101.44 (12)
C9—C1—C31120.26 (14)C19—C18—C17112.60 (13)
N1—C2—C3117.73 (14)N3—C18—H18A109.7
N1—C2—C7122.82 (14)C19—C18—H18A109.7
C3—C2—C7119.45 (15)C17—C18—H18A109.7
C4—C3—C2120.78 (16)C20—C19—C24118.88 (16)
C4—C3—H3A119.6C20—C19—C18120.24 (14)
C2—C3—H3A119.6C24—C19—C18120.81 (14)
C3—C4—C5119.22 (15)C19—C20—C21120.77 (16)
C3—C4—H4A120.4C19—C20—H20A119.6
C5—C4—H4A120.4C21—C20—H20A119.6
C6—C5—C4122.13 (15)C22—C21—C20118.24 (16)
C6—C5—Cl1120.01 (14)C22—C21—H21A120.9
C4—C5—Cl1117.86 (12)C20—C21—H21A120.9
C5—C6—C7119.37 (15)F1—C22—C21118.29 (17)
C5—C6—H6A120.3F1—C22—C23118.68 (17)
C7—C6—H6A120.3C21—C22—C23123.02 (17)
C6—C7—C2119.04 (14)C22—C23—C24117.98 (17)
C6—C7—C8123.17 (14)C22—C23—H23A121.0
C2—C7—C8117.77 (13)C24—C23—H23A121.0
C9—C8—C7118.24 (14)C23—C24—C19121.11 (17)
C9—C8—C10119.10 (13)C23—C24—H24A119.4
C7—C8—C10122.63 (13)C19—C24—H24A119.4
C8—C9—C1120.07 (14)N3—C25—C30120.43 (14)
C8—C9—C16120.27 (14)N3—C25—C26120.27 (14)
C1—C9—C16119.23 (13)C30—C25—C26119.21 (14)
C15—C10—C11119.28 (14)C27—C26—C25119.55 (16)
C15—C10—C8120.74 (13)C27—C26—H26A120.2
C11—C10—C8119.67 (14)C25—C26—H26A120.2
C12—C11—C10120.08 (16)C26—C27—C28121.60 (17)
C12—C11—H11A120.0C26—C27—H27A119.2
C10—C11—H11A120.0C28—C27—H27A119.2
C13—C12—C11120.18 (16)C29—C28—C27118.55 (15)
C13—C12—H12A119.9C29—C28—H28A120.7
C11—C12—H12A119.9C27—C28—H28A120.7
C12—C13—C14120.02 (16)C28—C29—C30121.20 (16)
C12—C13—H13A120.0C28—C29—H29A119.4
C14—C13—H13A120.0C30—C29—H29A119.4
C13—C14—C15120.30 (16)C29—C30—C25119.88 (15)
C13—C14—H14A119.8C29—C30—H30A120.1
C15—C14—H14A119.8C25—C30—H30A120.1
C14—C15—C10120.02 (15)C1—C31—H31A109.5
C14—C15—H15A120.0C1—C31—H31B109.5
C10—C15—H15A120.0H31A—C31—H31B109.5
N2—C16—C9123.64 (14)C1—C31—H31C109.5
N2—C16—C17113.94 (13)H31A—C31—H31C109.5
C9—C16—C17122.42 (13)H31B—C31—H31C109.5
C16—C17—C18101.86 (12)
C16—N2—N3—C25−158.10 (14)C8—C10—C15—C14−170.26 (14)
C16—N2—N3—C18−12.48 (18)N3—N2—C16—C9−178.89 (14)
C2—N1—C1—C9−0.2 (2)N3—N2—C16—C170.53 (19)
C2—N1—C1—C31−178.48 (15)C8—C9—C16—N2114.72 (18)
C1—N1—C2—C3178.56 (16)C1—C9—C16—N2−72.8 (2)
C1—N1—C2—C7−1.5 (2)C8—C9—C16—C17−64.7 (2)
N1—C2—C3—C4−179.70 (17)C1—C9—C16—C17107.78 (18)
C7—C2—C3—C40.4 (3)N2—C16—C17—C1810.63 (19)
C2—C3—C4—C5−0.8 (3)C9—C16—C17—C18−169.94 (14)
C3—C4—C5—C60.3 (3)C25—N3—C18—C19−77.43 (18)
C3—C4—C5—Cl1179.96 (15)N2—N3—C18—C19139.13 (13)
C4—C5—C6—C70.5 (3)C25—N3—C18—C17161.61 (15)
Cl1—C5—C6—C7−179.14 (13)N2—N3—C18—C1718.17 (17)
C5—C6—C7—C2−0.8 (2)C16—C17—C18—N3−16.11 (16)
C5—C6—C7—C8177.67 (15)C16—C17—C18—C19−137.59 (14)
N1—C2—C7—C6−179.49 (15)N3—C18—C19—C20132.50 (15)
C3—C2—C7—C60.4 (2)C17—C18—C19—C20−113.06 (16)
N1—C2—C7—C81.9 (2)N3—C18—C19—C24−50.6 (2)
C3—C2—C7—C8−178.16 (15)C17—C18—C19—C2463.8 (2)
C6—C7—C8—C9−179.16 (15)C24—C19—C20—C21−0.2 (2)
C2—C7—C8—C9−0.6 (2)C18—C19—C20—C21176.76 (14)
C6—C7—C8—C10−1.0 (2)C19—C20—C21—C220.1 (2)
C2—C7—C8—C10177.52 (14)C20—C21—C22—F1178.66 (14)
C7—C8—C9—C1−0.9 (2)C20—C21—C22—C230.0 (3)
C10—C8—C9—C1−179.15 (14)F1—C22—C23—C24−178.82 (16)
C7—C8—C9—C16171.44 (14)C21—C22—C23—C24−0.2 (3)
C10—C8—C9—C16−6.8 (2)C22—C23—C24—C190.2 (3)
N1—C1—C9—C81.4 (2)C20—C19—C24—C230.0 (3)
C31—C1—C9—C8179.67 (15)C18—C19—C24—C23−176.91 (16)
N1—C1—C9—C16−171.04 (15)N2—N3—C25—C30155.63 (15)
C31—C1—C9—C167.2 (2)C18—N3—C25—C3014.0 (2)
C9—C8—C10—C15114.82 (17)N2—N3—C25—C26−27.9 (2)
C7—C8—C10—C15−63.3 (2)C18—N3—C25—C26−169.55 (16)
C9—C8—C10—C11−58.7 (2)N3—C25—C26—C27−175.89 (17)
C7—C8—C10—C11123.13 (16)C30—C25—C26—C270.6 (3)
C15—C10—C11—C12−1.4 (2)C25—C26—C27—C28−0.5 (3)
C8—C10—C11—C12172.27 (14)C26—C27—C28—C29−0.3 (3)
C10—C11—C12—C13−1.8 (2)C27—C28—C29—C300.9 (3)
C11—C12—C13—C143.1 (3)C28—C29—C30—C25−0.8 (2)
C12—C13—C14—C15−1.2 (3)N3—C25—C30—C29176.51 (15)
C13—C14—C15—C10−2.1 (2)C26—C25—C30—C290.0 (2)
C11—C10—C15—C143.3 (2)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1/C2/C7–C9 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···N1i0.932.573.493 (2)173
C17—H17A···Cg10.972.863.6307 (19)137
C31—H31B···Cg2ii0.962.863.584 (2)133

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5303).

References

  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o3144–o3145. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography