PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o447.
Published online 2010 January 27. doi:  10.1107/S1600536810002631
PMCID: PMC2979868

N 4-(3-Bromo­phen­yl)quinazoline-4,6-diamine

Abstract

In the title compound, C14H11BrN4, the fused benzene and pyrimidine rings are nearly coplanar, making dihedral angles of 1.26 (14) and 3.53 (15)° in the two independent mol­ecules. In the crystal structure, π–π stacking inter­actions [centroid–centroid distances = 3.4736 (19) and 3.5416 (19) Å] and weak N—H(...)N and N—H(...)Br inter­actions contribute to the stability of the structure.

Related literature

For general background to the biological activity of N 4-(3-bromo­phen­yl)quinazoline derivatives, see: Fry et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o447-scheme1.jpg

Experimental

Crystal data

  • C14H11BrN4
  • M r = 315.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o447-efi1.jpg
  • a = 7.5579 (15) Å
  • b = 11.743 (2) Å
  • c = 15.554 (3) Å
  • α = 110.24 (3)°
  • β = 96.79 (3)°
  • γ = 96.75 (3)°
  • V = 1267.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.23 mm−1
  • T = 113 K
  • 0.36 × 0.26 × 0.23 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan [SADABS (Sheldrick, 1996 [triangle]) using a modified Dwiggins (1975 [triangle]) procedure] T min = 0.389, T max = 0.523
  • 10616 measured reflections
  • 5931 independent reflections
  • 3735 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.110
  • S = 1.02
  • 5931 reflections
  • 360 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.42 e Å−3
  • Δρmin = −1.54 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002631/pb2020sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002631/pb2020Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

supplementary crystallographic information

Comment

N4-(3-bromophenyl)quinazoline derivatives are of great importance owing to their wide biological properties (Fry et al. 1994). The title compound is one of the key intermediates in our synthetic investigations of antitumor drugs. We report here its crystal structure. As shown in Fig. 1, the benzene and pyrimidine rings of the title compound (I) are nearly coplanar, with the dihedral angle between them are 1.2° and 3.1°, respectively. A combination of intermolecular π-π packing interaction, N—H···N and N—H···Br hydrogen bonds plays important part in the connection of adjacent molecules.

Experimental

A mixture of N4-(3-bromophenyl)quinazoline-4,6-diamine (3.45 g, 10 mmol), Sodium sulfide nonahydrate (6.00 g, 25 mmol), sodium hydroxide (2.00 g, 50 mmol), ethanol (40 ml) and water (80 ml) was heated for 5.0 h under reflux. The ethanol was removed under vacuum. The solid was filtered, washed with cold water, dried to yield the title compound as a brown solid (2.2 g, 71% yield). Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of ethyl acetate.

Refinement

H atoms of the amino group were located in a difference map and refined freely. The reminaing H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
A packing diagram of the title compound.

Crystal data

C14H11BrN4Z = 4
Mr = 315.18F(000) = 632
Triclinic, P1Dx = 1.652 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5579 (15) ÅCell parameters from 3726 reflections
b = 11.743 (2) Åθ = 1.9–27.9°
c = 15.554 (3) ŵ = 3.23 mm1
α = 110.24 (3)°T = 113 K
β = 96.79 (3)°Block, colourless
γ = 96.75 (3)°0.36 × 0.26 × 0.23 mm
V = 1267.4 (4) Å3

Data collection

Rigaku Saturn CCD area-detector diffractometer5931 independent reflections
Radiation source: rotating anode3735 reflections with I > 2σ(I)
confocalRint = 0.034
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 1.9°
ω and [var phi] scansh = −9→9
Absorption correction: multi-scan [SADABS (Sheldrick, 1996) using a modified Dwiggins (1975) procedure]k = −9→15
Tmin = 0.389, Tmax = 0.523l = −20→20
10616 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110w = 1/[σ2(Fo2) + (0.052P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5931 reflectionsΔρmax = 1.42 e Å3
360 parametersΔρmin = −1.54 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0265 (14)

Special details

Experimental. Absorption correction: [interpolation using International Tables for Crystallography (Vol. C, 1992, p. 523, Table 6.3.3.3) for values of µR in the range 0–2.5, and International Tables for X-ray Crystallography (Vol. II, 1959, p. 302, Table 5.3.6B) for µR in the range 2.6–10.0; the interpolation procedure of Dwiggins (1975) was used with some modification]
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.32081 (4)0.54984 (3)0.19450 (3)0.02528 (13)
N10.7074 (3)0.7482 (2)0.01210 (19)0.0175 (6)
H1N0.622 (5)0.800 (4)0.026 (3)0.036 (11)*
N20.9911 (3)0.7443 (2)−0.03199 (19)0.0176 (6)
N31.0997 (3)0.8702 (2)−0.11423 (19)0.0175 (6)
N40.4365 (3)1.0316 (2)−0.13941 (19)0.0184 (6)
H4A0.34811.0082−0.11390.022*
H4B0.42251.0832−0.16840.022*
C10.5318 (4)0.5673 (3)0.1418 (2)0.0179 (7)
C20.6659 (4)0.4991 (3)0.1522 (2)0.0204 (7)
H20.65280.44330.18390.024*
C30.8198 (4)0.5164 (3)0.1143 (2)0.0198 (7)
H30.91360.47110.12040.024*
C40.8412 (4)0.5974 (3)0.0679 (2)0.0180 (7)
H40.94840.60740.04310.022*
C50.7044 (4)0.6642 (3)0.0580 (2)0.0164 (7)
C60.5474 (4)0.6477 (3)0.0953 (2)0.0167 (7)
H60.45240.69180.08850.020*
C70.8344 (4)0.7850 (3)−0.0327 (2)0.0158 (7)
C81.1141 (4)0.7914 (3)−0.0728 (2)0.0182 (7)
H81.22670.7632−0.07100.022*
C90.9338 (4)0.9078 (3)−0.1195 (2)0.0151 (6)
C100.7933 (4)0.8659 (3)−0.0804 (2)0.0149 (6)
C110.6255 (4)0.9061 (3)−0.0889 (2)0.0166 (7)
H110.52950.8771−0.06330.020*
C120.5995 (4)0.9869 (3)−0.1338 (2)0.0154 (7)
C130.7425 (4)1.0290 (3)−0.1721 (2)0.0196 (7)
H130.72561.0854−0.20260.024*
C140.9041 (4)0.9895 (3)−0.1658 (2)0.0191 (7)
H140.99801.0175−0.19290.023*
Br20.47743 (6)0.69252 (4)0.64544 (4)0.05308 (17)
N50.0018 (4)0.2805 (3)0.5104 (2)0.0236 (7)
H5N−0.105 (6)0.250 (4)0.497 (3)0.062 (16)*
N60.2839 (4)0.2212 (3)0.5094 (2)0.0225 (6)
N70.3236 (3)0.0159 (3)0.4224 (2)0.0220 (6)
N8−0.4215 (4)−0.1290 (3)0.3066 (2)0.0208 (6)
H8N1−0.470 (5)−0.207 (4)0.292 (3)0.031 (11)*
H8N2−0.467 (5)−0.080 (4)0.339 (3)0.029 (12)*
C150.2510 (5)0.5963 (3)0.6368 (3)0.0297 (8)
C160.1242 (5)0.6528 (4)0.6842 (3)0.0345 (9)
H160.15030.73760.72280.041*
C17−0.0417 (5)0.5833 (4)0.6743 (3)0.0353 (9)
H17−0.13170.62020.70670.042*
C18−0.0788 (5)0.4601 (3)0.6177 (3)0.0294 (8)
H18−0.19430.41320.61120.035*
C190.0523 (5)0.4039 (3)0.5700 (2)0.0237 (8)
C200.2198 (5)0.4734 (3)0.5799 (3)0.0270 (8)
H200.31120.43750.54830.032*
C210.1078 (4)0.1919 (3)0.4798 (2)0.0200 (7)
C220.3821 (4)0.1307 (3)0.4780 (2)0.0237 (8)
H220.50910.15300.49880.028*
C230.1403 (4)−0.0162 (3)0.3923 (2)0.0176 (7)
C240.0232 (4)0.0702 (3)0.4192 (2)0.0179 (7)
C25−0.1655 (4)0.0310 (3)0.3887 (2)0.0209 (7)
H25−0.24460.08940.40470.025*
C26−0.2359 (4)−0.0901 (3)0.3363 (2)0.0200 (7)
C27−0.1169 (4)−0.1752 (3)0.3086 (2)0.0208 (7)
H27−0.1645−0.25850.27070.025*
C280.0670 (4)−0.1386 (3)0.3358 (2)0.0209 (7)
H280.1452−0.19680.31620.025*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0237 (2)0.0263 (2)0.0295 (2)0.00205 (15)0.01249 (15)0.01294 (17)
N10.0181 (13)0.0173 (14)0.0246 (17)0.0096 (12)0.0100 (12)0.0127 (13)
N20.0158 (13)0.0171 (14)0.0222 (16)0.0055 (11)0.0069 (11)0.0078 (13)
N30.0127 (12)0.0170 (14)0.0236 (16)0.0032 (11)0.0076 (11)0.0068 (13)
N40.0159 (13)0.0229 (15)0.0244 (17)0.0091 (12)0.0096 (11)0.0148 (14)
C10.0198 (16)0.0165 (16)0.0178 (18)0.0030 (13)0.0068 (13)0.0058 (15)
C20.0245 (17)0.0170 (17)0.023 (2)0.0053 (14)0.0063 (14)0.0095 (16)
C30.0224 (17)0.0168 (17)0.0229 (19)0.0085 (14)0.0046 (14)0.0085 (15)
C40.0146 (15)0.0190 (17)0.0223 (19)0.0058 (13)0.0055 (13)0.0082 (16)
C50.0207 (16)0.0130 (15)0.0144 (18)0.0011 (13)0.0053 (13)0.0037 (14)
C60.0181 (16)0.0149 (16)0.0170 (18)0.0061 (13)0.0058 (13)0.0036 (14)
C70.0145 (15)0.0128 (15)0.0182 (18)0.0010 (13)0.0063 (13)0.0025 (14)
C80.0141 (15)0.0147 (16)0.027 (2)0.0059 (13)0.0073 (13)0.0059 (15)
C90.0158 (15)0.0131 (15)0.0158 (17)0.0030 (13)0.0051 (12)0.0036 (14)
C100.0150 (15)0.0130 (15)0.0163 (18)0.0034 (13)0.0058 (12)0.0034 (14)
C110.0165 (15)0.0152 (16)0.0203 (19)0.0038 (13)0.0078 (13)0.0075 (15)
C120.0137 (15)0.0149 (16)0.0163 (18)0.0029 (13)0.0025 (12)0.0041 (14)
C130.0217 (17)0.0207 (17)0.0217 (19)0.0057 (14)0.0085 (14)0.0120 (16)
C140.0164 (16)0.0224 (18)0.0209 (19)0.0026 (14)0.0082 (13)0.0095 (16)
Br20.0563 (3)0.0275 (2)0.0698 (4)−0.0053 (2)0.0215 (3)0.0114 (2)
N50.0242 (16)0.0195 (16)0.0269 (18)0.0083 (14)0.0065 (13)0.0060 (14)
N60.0227 (15)0.0241 (16)0.0220 (17)0.0070 (13)0.0061 (12)0.0084 (14)
N70.0180 (14)0.0264 (16)0.0234 (17)0.0076 (13)0.0052 (12)0.0095 (14)
N80.0166 (14)0.0225 (17)0.0203 (18)0.0056 (14)0.0022 (12)0.0037 (15)
C150.040 (2)0.025 (2)0.025 (2)0.0030 (17)0.0080 (17)0.0102 (18)
C160.061 (3)0.0206 (19)0.024 (2)0.0124 (19)0.0130 (19)0.0071 (18)
C170.047 (2)0.035 (2)0.030 (2)0.015 (2)0.0186 (19)0.011 (2)
C180.038 (2)0.026 (2)0.028 (2)0.0114 (17)0.0147 (17)0.0081 (18)
C190.0319 (19)0.0238 (19)0.019 (2)0.0098 (16)0.0056 (15)0.0098 (17)
C200.036 (2)0.0237 (19)0.026 (2)0.0098 (17)0.0119 (16)0.0119 (18)
C210.0244 (17)0.0224 (18)0.0176 (19)0.0081 (15)0.0091 (14)0.0096 (16)
C220.0206 (17)0.030 (2)0.025 (2)0.0069 (15)0.0076 (14)0.0129 (18)
C230.0187 (16)0.0224 (18)0.0144 (18)0.0057 (14)0.0046 (13)0.0086 (15)
C240.0177 (16)0.0239 (18)0.0180 (18)0.0092 (14)0.0056 (13)0.0121 (16)
C250.0221 (17)0.0228 (18)0.0201 (19)0.0094 (15)0.0079 (14)0.0074 (16)
C260.0229 (17)0.0239 (18)0.0162 (19)0.0067 (15)0.0046 (13)0.0094 (16)
C270.0242 (17)0.0228 (18)0.0160 (18)0.0065 (15)0.0050 (13)0.0067 (15)
C280.0245 (17)0.0270 (19)0.0199 (19)0.0160 (15)0.0120 (14)0.0128 (16)

Geometric parameters (Å, °)

Br1—C11.899 (3)Br2—C151.900 (4)
N1—C71.365 (4)N5—C211.376 (4)
N1—C51.403 (4)N5—C191.401 (5)
N1—H1N0.93 (4)N5—H5N0.82 (4)
N2—C71.328 (4)N6—C211.319 (4)
N2—C81.354 (4)N6—C221.353 (4)
N3—C81.305 (4)N7—C221.313 (4)
N3—C91.380 (4)N7—C231.372 (4)
N4—C121.400 (4)N8—C261.392 (4)
N4—H4A0.8800N8—H8N10.89 (4)
N4—H4B0.8800N8—H8N20.77 (4)
C1—C61.377 (4)C15—C161.372 (5)
C1—C21.391 (4)C15—C201.381 (5)
C2—C31.390 (4)C16—C171.374 (5)
C2—H20.9500C16—H160.9500
C3—C41.384 (4)C17—C181.383 (5)
C3—H30.9500C17—H170.9500
C4—C51.395 (4)C18—C191.399 (5)
C4—H40.9500C18—H180.9500
C5—C61.403 (4)C19—C201.384 (5)
C6—H60.9500C20—H200.9500
C7—C101.433 (4)C21—C241.431 (5)
C8—H80.9500C22—H220.9500
C9—C101.406 (4)C23—C281.402 (5)
C9—C141.407 (4)C23—C241.412 (4)
C10—C111.412 (4)C24—C251.416 (4)
C11—C121.378 (4)C25—C261.374 (5)
C11—H110.9500C25—H250.9500
C12—C131.414 (4)C26—C271.413 (4)
C13—C141.362 (4)C27—C281.375 (4)
C13—H130.9500C27—H270.9500
C14—H140.9500C28—H280.9500
C7—N1—C5131.2 (2)C21—N5—C19129.5 (3)
C7—N1—H1N114 (2)C21—N5—H5N111 (3)
C5—N1—H1N113 (2)C19—N5—H5N119 (3)
C7—N2—C8115.9 (2)C21—N6—C22116.5 (3)
C8—N3—C9115.2 (3)C22—N7—C23116.0 (3)
C12—N4—H4A120.0C26—N8—H8N1121 (2)
C12—N4—H4B120.0C26—N8—H8N2106 (3)
H4A—N4—H4B120.0H8N1—N8—H8N2117 (4)
C6—C1—C2122.4 (3)C16—C15—C20123.2 (4)
C6—C1—Br1118.8 (2)C16—C15—Br2118.7 (3)
C2—C1—Br1118.8 (2)C20—C15—Br2118.1 (3)
C1—C2—C3117.0 (3)C15—C16—C17118.1 (4)
C1—C2—H2121.5C15—C16—H16121.0
C3—C2—H2121.5C17—C16—H16121.0
C4—C3—C2122.3 (3)C16—C17—C18120.6 (4)
C4—C3—H3118.9C16—C17—H17119.7
C2—C3—H3118.9C18—C17—H17119.7
C3—C4—C5119.5 (3)C17—C18—C19120.5 (4)
C3—C4—H4120.2C17—C18—H18119.7
C5—C4—H4120.2C19—C18—H18119.7
C4—C5—C6119.1 (3)C20—C19—C18119.1 (3)
C4—C5—N1125.6 (3)C20—C19—N5123.6 (3)
C6—C5—N1115.3 (3)C18—C19—N5117.2 (3)
C1—C6—C5119.6 (3)C15—C20—C19118.5 (3)
C1—C6—H6120.2C15—C20—H20120.7
C5—C6—H6120.2C19—C20—H20120.7
N2—C7—N1119.6 (3)N6—C21—N5118.7 (3)
N2—C7—C10121.8 (3)N6—C21—C24122.1 (3)
N1—C7—C10118.6 (2)N5—C21—C24119.1 (3)
N3—C8—N2129.1 (3)N7—C22—N6128.0 (3)
N3—C8—H8115.4N7—C22—H22116.0
N2—C8—H8115.4N6—C22—H22116.0
N3—C9—C10121.7 (3)N7—C23—C28119.3 (3)
N3—C9—C14119.1 (3)N7—C23—C24121.5 (3)
C10—C9—C14119.1 (3)C28—C23—C24119.2 (3)
C9—C10—C11119.4 (3)C23—C24—C25119.2 (3)
C9—C10—C7116.1 (2)C23—C24—C21115.8 (3)
C11—C10—C7124.6 (3)C25—C24—C21125.0 (3)
C12—C11—C10120.6 (3)C26—C25—C24121.0 (3)
C12—C11—H11119.7C26—C25—H25119.5
C10—C11—H11119.7C24—C25—H25119.5
C11—C12—N4121.3 (3)C25—C26—N8121.1 (3)
C11—C12—C13119.4 (3)C25—C26—C27119.2 (3)
N4—C12—C13119.2 (3)N8—C26—C27119.6 (3)
C14—C13—C12120.7 (3)C28—C27—C26120.7 (3)
C14—C13—H13119.7C28—C27—H27119.7
C12—C13—H13119.7C26—C27—H27119.7
C13—C14—C9120.8 (3)C27—C28—C23120.7 (3)
C13—C14—H14119.6C27—C28—H28119.7
C9—C14—H14119.6C23—C28—H28119.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···N4i0.93 (4)2.28 (4)3.069 (4)142 (3)
N4—H4A···N3ii0.882.333.137 (4)153
N4—H4B···N8iii0.882.393.178 (4)149
N8—H8N1···Br1iv0.89 (4)2.88 (4)3.739 (4)163 (3)
N8—H8N2···N7ii0.77 (4)2.31 (4)3.053 (4)162 (4)

Symmetry codes: (i) −x+1, −y+2, −z; (ii) x−1, y, z; (iii) −x, −y+1, −z; (iv) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2020).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Dwiggins, C. W. (1975). Acta Cryst. A31, 146–148.
  • Fry, D. W., Krer, A. J. & Denny, W. (1994). Science, 265, 1093–1108. [PubMed]
  • Fry, D. W., Krer, A. J. & Denny, W. (2005). Russ. Chem. Bull.54, 864–904.
  • Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göottingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography