PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o302.
Published online 2010 January 9. doi:  10.1107/S1600536809055809
PMCID: PMC2979861

Ethyl 2-amino-7,7-dimethyl-2′,5-dioxo­spiro­[5,6,7,8-tetra­hydro-4H-chromene-4,3′(2′H)-1H-indole]-3-carboxyl­ate

Abstract

In the mol­ecule of the title compound, C21H22N2O5, the indole system and the spiro-pyran ring are almost planar [maximum deviations of 0.0447 (17) and 0.0781 (17) Å, respectively]; the dihedral angle between them is 84.6 (3)°. The remaining six-membered ring adopts a twisted conformation. Intra­molecular N—H(...)O hydrogen bonds occur. In the crystal structure, intera­molecular N—H(...)O and C—H(...)O hydrogen bonds link the mol­ecules.

Related literature

For the indole nucleus, see: da Silva et al., (2001 [triangle]). For the anti­bacterial and fungicidal activities of indoles, see: Joshi & Chand (1982 [triangle]). Spiro­oxindole ring systems are found in a number of alkaloids, see: Abdel-Rahman et al. (2004 [triangle]). For our work on the preparation of heterocyclic compounds involving indole derivatives, see: Zhu et al. (2007 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o302-scheme1.jpg

Experimental

Crystal data

  • C21H22N2O5
  • M r = 382.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o302-efi1.jpg
  • a = 8.4298 (14) Å
  • b = 11.6791 (17) Å
  • c = 19.024 (3) Å
  • β = 99.136 (4)°
  • V = 1849.2 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 153 K
  • 0.50 × 0.35 × 0.12 mm

Data collection

  • Rigaku Mercury diffractometer
  • Absorption correction: multi-scan (Jacobson, 1998 [triangle]) T min = 0.814, T max = 0.988
  • 17728 measured reflections
  • 3374 independent reflections
  • 2944 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.107
  • S = 1.15
  • 3374 reflections
  • 257 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001 [triangle]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809055809/ds2016sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055809/ds2016Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partially supported by the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (grant No. 09KJB150012), the Special Presidential Foundation of Xuzhou Medical College (grant No. 09KJZ19) and the Open Foundation of the Key Laboratory of Cancer Biotherapy of Xuzhou Medical College (grant No. C0901).

supplementary crystallographic information

Comment

The indole nucleus is the well known heterocycle (da Silva et al., 2001). Compounds carrying the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). Spirooxindole ring systems are found in a number of alkaloids like horsifiline, spirotryprostatin and elacomine (Abdel-Rahman et al., 2004). As a part of our programme devoted to the preparation of heterocyclic compounds involving indole derivatives (Zhu et al., 2007), we have synthesized a series of spirooxindoles via reactions of substituted isatins together with malononitrile (or ethyl 2-cyanoacetate) and enaminones . We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), the indole ring A (C3/C12/N2/C13-C18) and the spiro pyran ring B (O1/C1-C5), are planar. The dihedral angle between them is 84.6 (3)°. Ring C (C1/C2/C6-C9) adopts twisted conformation, with C7 and C8 deviating the C1/C2/C6/C9 plane by 0.1525 (18) and -0.4751 (18)Å, respectively. And the C1/C2/C6/C9 plane is oriented at a dihedral angle of 6.2 (2)° with the fused pyran ring B.

In the crystal structure, intermolecular and intramolecular N-H···O hydrogen bonds (N1-H1A···O4, N1-H1B···O3, N2-H2···O2. ) (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

Compound (I) was prepared by one-pot reaction of isatin (2 mmol), ethyl 2-cyanoacetate (2 mmol) and 5,5-dimethylcyclohexane- 1,3-dione (2 mmol) in water (10 ml). The reaction was catalyzed by TEBAC (triethylbenzylammonium chloride, 1 mmol). After stirring at 333 K for 5 h, the reaction mixture was cooled and washed with small amount of ethanol. The crude product was filtered and single crystals of the title compound were obtained from ethanol solution by slow evaporation at room temperature (yield; 80%, m.p. 518-519 K). Spectroscopic analysis: IR (KBr, n, cm-1): 3364, 3241, 3187, 2955, 1690, 1613, 1520, 1474, 1304, 1227, 1165, 1057, 926, 748, 609, 556. 1H NMR (400 MHz, CDCl3): 7.48 (br s, 1H, NH), 7.14 (t, J = 7.2 Hz, 1H, ArH), 6,88-6.94 (m, 2H, ArH), 6.80 (t, J = 8.4 Hz, 1H, ArH), 6.49 (br s, 2H, NH2), 3.90-3.95 (m, 2H, CH2), 2.51-2.54 (m, 2H, CH2), 2.11-2.24 (m, 2H, CH2), 1.28 (t, J = 7.6 Hz, 3H, CH3), 1.10 (s, 3H, CH3), 1.01(s, 3H, CH3).

Refinement

H atoms were positioned geometrically, with N-H = 0.88 Å (for NH) and C-H = 0.95 and 0.98 Å for aromatic and methyl H, respectivly and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C21H22N2O5F(000) = 808
Mr = 382.41Dx = 1.374 Mg m3
Monoclinic, P21/nMelting point = 518–519 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71070 Å
a = 8.4298 (14) ÅCell parameters from 6298 reflections
b = 11.6791 (17) Åθ = 3.0–25.3°
c = 19.024 (3) ŵ = 0.10 mm1
β = 99.136 (4)°T = 153 K
V = 1849.2 (5) Å3Block, colorless
Z = 40.50 × 0.35 × 0.12 mm

Data collection

Rigaku Mercury diffractometer3374 independent reflections
Radiation source: fine-focus sealed tube2944 reflections with I > 2σ(I)
graphiteRint = 0.041
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = −10→10
Absorption correction: multi-scan (Jacobson, 1998)k = −14→13
Tmin = 0.814, Tmax = 0.988l = −22→22
17728 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.15w = 1/[σ2(Fo2) + (0.040P)2 + 0.757P] where P = (Fo2 + 2Fc2)/3
3374 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.58254 (15)0.33374 (11)0.25244 (6)0.0258 (3)
O20.34545 (16)0.04523 (12)0.09660 (7)0.0315 (3)
O30.76243 (15)0.05137 (11)0.13053 (7)0.0271 (3)
O40.93311 (15)0.42547 (11)0.12924 (7)0.0276 (3)
O50.84779 (15)0.28028 (12)0.05510 (7)0.0290 (3)
N10.7795 (2)0.45339 (14)0.23971 (9)0.0323 (4)
H1A0.85610.48250.21870.039*
H1B0.76030.48220.28030.039*
N20.62096 (18)0.09772 (13)0.02113 (8)0.0220 (3)
H20.65060.0396−0.00320.026*
C10.4876 (2)0.24020 (15)0.23304 (9)0.0213 (4)
C20.4815 (2)0.18729 (15)0.17020 (9)0.0200 (4)
C30.5860 (2)0.22220 (15)0.11542 (9)0.0200 (4)
C40.7072 (2)0.31183 (15)0.14793 (9)0.0209 (4)
C50.6927 (2)0.36589 (16)0.21015 (9)0.0229 (4)
C60.3686 (2)0.09070 (16)0.15531 (10)0.0226 (4)
C70.2872 (2)0.04575 (16)0.21471 (10)0.0255 (4)
H7A0.3577−0.01250.24150.031*
H7B0.18640.00700.19360.031*
C80.2471 (2)0.13669 (16)0.26702 (9)0.0231 (4)
C90.3984 (2)0.20711 (17)0.29162 (10)0.0256 (4)
H9A0.36790.27750.31520.031*
H9B0.47100.16240.32750.031*
C100.1122 (2)0.21397 (18)0.23047 (11)0.0316 (5)
H10A0.14940.25580.19150.047*
H10B0.08180.26860.26510.047*
H10C0.01890.16700.21140.047*
C110.1937 (2)0.07742 (18)0.33125 (10)0.0309 (5)
H11A0.09510.03390.31550.046*
H11B0.17340.13520.36610.046*
H11C0.27840.02530.35320.046*
C120.6698 (2)0.11300 (15)0.09176 (9)0.0213 (4)
C130.5176 (2)0.18514 (15)−0.00876 (9)0.0215 (4)
C140.4506 (2)0.20069 (17)−0.07895 (10)0.0279 (5)
H140.46780.1471−0.11450.033*
C150.3570 (2)0.29760 (18)−0.09573 (11)0.0324 (5)
H150.30840.3103−0.14370.039*
C160.3332 (2)0.37610 (18)−0.04389 (11)0.0319 (5)
H160.27050.4427−0.05670.038*
C170.4006 (2)0.35815 (16)0.02711 (10)0.0261 (4)
H170.38390.41160.06290.031*
C180.4919 (2)0.26158 (15)0.04424 (9)0.0206 (4)
C190.8378 (2)0.34677 (16)0.11166 (9)0.0226 (4)
C200.9853 (2)0.29242 (19)0.01860 (11)0.0353 (5)
H20A1.08270.31170.05290.042*
H20B0.96610.3540−0.01750.042*
C211.0062 (3)0.1792 (2)−0.01643 (12)0.0434 (6)
H21A1.02440.11910.01990.065*
H21B1.09860.1833−0.04170.065*
H21C0.90910.1615−0.05030.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0258 (7)0.0279 (7)0.0249 (7)−0.0071 (6)0.0076 (5)−0.0071 (6)
O20.0358 (8)0.0318 (8)0.0291 (8)−0.0101 (6)0.0120 (6)−0.0115 (6)
O30.0269 (7)0.0275 (7)0.0271 (7)0.0066 (6)0.0047 (6)0.0049 (6)
O40.0237 (7)0.0265 (7)0.0321 (7)−0.0066 (6)0.0031 (6)0.0005 (6)
O50.0266 (7)0.0351 (8)0.0275 (7)−0.0099 (6)0.0117 (6)−0.0045 (6)
N10.0331 (10)0.0342 (10)0.0308 (9)−0.0124 (8)0.0087 (7)−0.0130 (8)
N20.0249 (8)0.0209 (8)0.0213 (8)−0.0001 (7)0.0074 (6)−0.0028 (6)
C10.0190 (9)0.0216 (10)0.0230 (9)−0.0001 (7)0.0024 (7)−0.0002 (8)
C20.0192 (9)0.0202 (10)0.0212 (9)0.0000 (7)0.0049 (7)0.0006 (7)
C30.0193 (9)0.0198 (9)0.0211 (9)−0.0006 (7)0.0040 (7)−0.0015 (7)
C40.0197 (9)0.0204 (10)0.0223 (9)−0.0003 (7)0.0020 (7)0.0006 (7)
C50.0202 (9)0.0247 (10)0.0235 (10)−0.0015 (8)0.0024 (8)−0.0001 (8)
C60.0214 (9)0.0205 (10)0.0266 (10)0.0026 (8)0.0061 (8)−0.0024 (8)
C70.0255 (10)0.0232 (10)0.0291 (10)−0.0012 (8)0.0082 (8)0.0007 (8)
C80.0212 (9)0.0241 (10)0.0253 (10)0.0019 (8)0.0072 (8)0.0026 (8)
C90.0261 (10)0.0285 (11)0.0229 (10)0.0035 (8)0.0066 (8)0.0001 (8)
C100.0237 (10)0.0332 (12)0.0383 (12)0.0061 (9)0.0062 (9)0.0047 (9)
C110.0317 (11)0.0330 (12)0.0308 (11)0.0012 (9)0.0134 (9)0.0045 (9)
C120.0207 (9)0.0203 (10)0.0242 (10)−0.0039 (8)0.0073 (8)0.0009 (8)
C130.0189 (9)0.0239 (10)0.0220 (9)−0.0050 (8)0.0047 (7)0.0005 (8)
C140.0280 (10)0.0342 (11)0.0218 (10)−0.0088 (9)0.0051 (8)0.0005 (8)
C150.0267 (11)0.0413 (13)0.0270 (11)−0.0059 (9)−0.0021 (8)0.0092 (9)
C160.0238 (10)0.0308 (11)0.0391 (12)0.0014 (9)−0.0005 (9)0.0122 (9)
C170.0212 (10)0.0239 (10)0.0333 (11)−0.0017 (8)0.0045 (8)0.0001 (8)
C180.0175 (9)0.0209 (10)0.0235 (9)−0.0042 (7)0.0039 (7)0.0006 (7)
C190.0212 (9)0.0235 (10)0.0219 (9)−0.0001 (8)−0.0003 (7)0.0032 (8)
C200.0305 (11)0.0459 (13)0.0333 (11)−0.0100 (10)0.0167 (9)−0.0016 (10)
C210.0393 (13)0.0514 (15)0.0449 (13)−0.0047 (11)0.0229 (11)−0.0058 (11)

Geometric parameters (Å, °)

O1—C11.370 (2)C8—C101.530 (3)
O1—C51.374 (2)C8—C111.533 (3)
O2—C61.224 (2)C9—H9A0.9900
O3—C121.220 (2)C9—H9B0.9900
O4—C191.232 (2)C10—H10A0.9800
O5—C191.340 (2)C10—H10B0.9800
O5—C201.450 (2)C10—H10C0.9800
N1—C51.328 (2)C11—H11A0.9800
N1—H1A0.8800C11—H11B0.9800
N1—H1B0.8800C11—H11C0.9800
N2—C121.353 (2)C13—C141.377 (3)
N2—C131.403 (2)C13—C181.389 (3)
N2—H20.8800C14—C151.387 (3)
C1—C21.339 (2)C14—H140.9500
C1—C91.491 (3)C15—C161.384 (3)
C2—C61.474 (3)C15—H150.9500
C2—C31.523 (2)C16—C171.396 (3)
C3—C41.524 (2)C16—H160.9500
C3—C181.528 (2)C17—C181.375 (3)
C3—C121.559 (3)C17—H170.9500
C4—C51.364 (3)C20—C211.503 (3)
C4—C191.448 (3)C20—H20A0.9900
C6—C71.507 (3)C20—H20B0.9900
C7—C81.530 (3)C21—H21A0.9800
C7—H7A0.9900C21—H21B0.9800
C7—H7B0.9900C21—H21C0.9800
C8—C91.527 (3)
C1—O1—C5118.72 (14)C8—C10—H10B109.5
C19—O5—C20119.01 (15)H10A—C10—H10B109.5
C5—N1—H1A120.0C8—C10—H10C109.5
C5—N1—H1B120.0H10A—C10—H10C109.5
H1A—N1—H1B120.0H10B—C10—H10C109.5
C12—N2—C13112.20 (15)C8—C11—H11A109.5
C12—N2—H2123.9C8—C11—H11B109.5
C13—N2—H2123.9H11A—C11—H11B109.5
C2—C1—O1123.13 (16)C8—C11—H11C109.5
C2—C1—C9126.52 (17)H11A—C11—H11C109.5
O1—C1—C9110.34 (15)H11B—C11—H11C109.5
C1—C2—C6117.18 (16)O3—C12—N2125.94 (17)
C1—C2—C3122.87 (16)O3—C12—C3125.73 (16)
C6—C2—C3119.95 (15)N2—C12—C3108.32 (15)
C2—C3—C4109.24 (14)C14—C13—C18122.13 (18)
C2—C3—C18114.32 (14)C14—C13—N2128.45 (17)
C4—C3—C18111.93 (14)C18—C13—N2109.39 (15)
C2—C3—C12108.45 (14)C13—C14—C15117.47 (18)
C4—C3—C12111.94 (14)C13—C14—H14121.3
C18—C3—C12100.71 (14)C15—C14—H14121.3
C5—C4—C19117.57 (16)C16—C15—C14121.19 (18)
C5—C4—C3121.57 (16)C16—C15—H15119.4
C19—C4—C3120.78 (15)C14—C15—H15119.4
N1—C5—C4127.17 (17)C15—C16—C17120.47 (19)
N1—C5—O1109.90 (15)C15—C16—H16119.8
C4—C5—O1122.93 (16)C17—C16—H16119.8
O2—C6—C2120.78 (16)C18—C17—C16118.64 (18)
O2—C6—C7120.50 (17)C18—C17—H17120.7
C2—C6—C7118.66 (16)C16—C17—H17120.7
C6—C7—C8114.84 (16)C17—C18—C13120.07 (17)
C6—C7—H7A108.6C17—C18—C3130.49 (17)
C8—C7—H7A108.6C13—C18—C3109.33 (15)
C6—C7—H7B108.6O4—C19—O5121.92 (17)
C8—C7—H7B108.6O4—C19—C4126.41 (17)
H7A—C7—H7B107.5O5—C19—C4111.66 (15)
C9—C8—C7108.25 (15)O5—C20—C21106.56 (16)
C9—C8—C10110.24 (16)O5—C20—H20A110.4
C7—C8—C10109.82 (16)C21—C20—H20A110.4
C9—C8—C11109.61 (15)O5—C20—H20B110.4
C7—C8—C11109.16 (15)C21—C20—H20B110.4
C10—C8—C11109.72 (15)H20A—C20—H20B108.6
C1—C9—C8113.97 (15)C20—C21—H21A109.5
C1—C9—H9A108.8C20—C21—H21B109.5
C8—C9—H9A108.8H21A—C21—H21B109.5
C1—C9—H9B108.8C20—C21—H21C109.5
C8—C9—H9B108.8H21A—C21—H21C109.5
H9A—C9—H9B107.7H21B—C21—H21C109.5
C8—C10—H10A109.5
C5—O1—C1—C2−9.1 (3)C10—C8—C9—C1−76.1 (2)
C5—O1—C1—C9169.84 (15)C11—C8—C9—C1163.06 (16)
O1—C1—C2—C6−177.43 (15)C13—N2—C12—O3−178.32 (17)
C9—C1—C2—C63.8 (3)C13—N2—C12—C32.29 (19)
O1—C1—C2—C33.2 (3)C2—C3—C12—O3−61.1 (2)
C9—C1—C2—C3−175.58 (17)C4—C3—C12—O359.5 (2)
C1—C2—C3—C47.4 (2)C18—C3—C12—O3178.58 (17)
C6—C2—C3—C4−171.98 (15)C2—C3—C12—N2118.30 (15)
C1—C2—C3—C18−118.89 (19)C4—C3—C12—N2−121.10 (16)
C6—C2—C3—C1861.7 (2)C18—C3—C12—N2−2.03 (17)
C1—C2—C3—C12129.65 (18)C12—N2—C13—C14176.80 (18)
C6—C2—C3—C12−49.7 (2)C12—N2—C13—C18−1.6 (2)
C2—C3—C4—C5−13.0 (2)C18—C13—C14—C151.0 (3)
C18—C3—C4—C5114.60 (19)N2—C13—C14—C15−177.16 (17)
C12—C3—C4—C5−133.18 (18)C13—C14—C15—C160.6 (3)
C2—C3—C4—C19170.14 (16)C14—C15—C16—C17−1.3 (3)
C18—C3—C4—C19−62.2 (2)C15—C16—C17—C180.5 (3)
C12—C3—C4—C1950.0 (2)C16—C17—C18—C131.1 (3)
C19—C4—C5—N14.7 (3)C16—C17—C18—C3176.77 (18)
C3—C4—C5—N1−172.18 (17)C14—C13—C18—C17−1.8 (3)
C19—C4—C5—O1−174.29 (16)N2—C13—C18—C17176.64 (16)
C3—C4—C5—O18.8 (3)C14—C13—C18—C3−178.38 (16)
C1—O1—C5—N1−176.23 (15)N2—C13—C18—C30.1 (2)
C1—O1—C5—C42.9 (3)C2—C3—C18—C1769.0 (2)
C1—C2—C6—O2173.11 (17)C4—C3—C18—C17−55.8 (2)
C3—C2—C6—O2−7.5 (3)C12—C3—C18—C17−174.93 (18)
C1—C2—C6—C7−9.4 (2)C2—C3—C18—C13−114.90 (17)
C3—C2—C6—C7170.05 (16)C4—C3—C18—C13120.22 (16)
O2—C6—C7—C8−147.85 (17)C12—C3—C18—C131.13 (18)
C2—C6—C7—C834.6 (2)C20—O5—C19—O47.4 (3)
C6—C7—C8—C9−50.6 (2)C20—O5—C19—C4−171.23 (16)
C6—C7—C8—C1069.8 (2)C5—C4—C19—O4−4.3 (3)
C6—C7—C8—C11−169.86 (16)C3—C4—C19—O4172.61 (17)
C2—C1—C9—C8−23.1 (3)C5—C4—C19—O5174.22 (16)
O1—C1—C9—C8158.03 (15)C3—C4—C19—O5−8.8 (2)
C7—C8—C9—C144.1 (2)C19—O5—C20—C21154.05 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.882.032.658 (2)128
N1—H1B···O3i0.881.922.794 (2)175
N2—H2···O2ii0.882.042.8435 (19)152
C16—H16···O4iii0.952.543.448 (2)159

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+1, −y, −z; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2016).

References

  • Abdel-Rahman, A. H., Keshk, E. M., Hanna, M. A. & El-Bady, Sh. M. (2004). Bioorg. Med. Chem.12, 2483–2488. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12. [PubMed]
  • Rigaku/MSC (2001). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc.12, 273–324.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zhu, S. L., Ji, S. J. & Zhang, Y. (2007). Tetrahedron, 63, 9365–9372.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography