PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m148.
Published online 2010 January 13. doi:  10.1107/S1600536810000759
PMCID: PMC2979860

Tricarbon­yl(2-methyl-2-η6-phenyl-1,3-dioxolane)chromium(0)

Abstract

The structure of the title compound, [Cr(C10H12O2)(CO)3], is presented. The distorted piano-stool geometry features an off-center Cr(CO)3 fragment which reduces contact with the dioxolane ring. The dioxolane ring, in twisted conformation, is syn-oriented towards the Cr(CO)3 moiety.

Related literature

For the synthesis of the title compound, see: Bitterwolf (1988 [triangle]); Mahaffy & Pauson (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m148-scheme1.jpg

Experimental

Crystal data

  • [Cr(C10H12O2)(CO)3]
  • M r = 300.23
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m148-efi1.jpg
  • a = 7.1950 (3) Å
  • b = 7.2120 (3) Å
  • c = 13.9235 (6) Å
  • α = 75.573 (2)°
  • β = 79.277 (2)°
  • γ = 62.734 (1)°
  • V = 619.79 (5) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 7.74 mm−1
  • T = 173 K
  • 0.11 × 0.08 × 0.08 mm

Data collection

  • Bruker Proteum diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.489, T max = 0.587
  • 13788 measured reflections
  • 2163 independent reflections
  • 2066 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.072
  • S = 1.11
  • 2163 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: PROTEUM2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and RASTER3D (Merritt & Bacon, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810000759/kp2246sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000759/kp2246Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

CBD acknowledges stipend support provided by the National Institute of Standards and Technology grant No. 70NANB4H1093 and the National Science Foundation grant No. CHE-0227475. Support of this research by the Cancer Center Support CORE grant No. P30 CA-21765 and the American Lebanese Syrian Associated Charities (ALSAC) is gratefully acknowledged on behalf of CRR. CBD is also thankful to Professor Duane Miller for his support while writing this paper. Tragically, Charles Ross died before the publication of this paper. His contribution to this work and several others including the doctoral dissertation of CBD is greatly appreciated.

supplementary crystallographic information

Comment

Synthesized en route to η6-acetophenone chromium tricarbonyl, I was formed by treatment of acetophenone ethylene ketal (II) with Cr(CO)6. Though similar syntheses of the title compound have been previously reported (Bitterwolf, 1981), no structure (Fig. 1) has been previously published. A piano-stool structure, typical of arenechromiumcarbonyls, was found with the sum of the carbonyl C—Cr—C angles of 264.25 (15) °. Rather than above the ring, as would apparently minimize the interaction between the side chain and metal, the dioxolane moiety is oriented towards the Cr(CO)3 moiety and the benzylic carbon is approximately 6.5 ° out of the plane of the ring. The distorted piano-stool geometry features an off-center Cr(CO)3 fragment which is offset from the dioxolane moiety; Cr—C distances in the ring average 2.2207 (18) Å with a minimum of 2.1942 (18) Å to C5 opposite the closest Cr-sidechain distance of 3.433 Å to H10B. The largest aniosotropic displacement parameters are on the three carbonyl O atoms which experience the largest motion in the molecule as a function of the Cr—CO moment arm. The packing of I (Fig. 2) with two unit cells in each dimension is given.

Experimental

Acetophenone (30.0 ml, 100 mmol) and ethylene glycol (28.0 ml, 500 mmol) were stirred in toluene (100 ml) with p-TsOH (30 mg, 0.17 µmol) for 12 h. Concentration by rotary evaporation and filtration afforded 2 (8.856 g) in 54% yield. The title compound was isolated in 28% yield by the standard literature method (Mahaffey et al., 1990) of treating II with Cr(CO)6 in refluxing THF/Bu2O (10%) under a nitrogen environment for 40 h. Solvent removal in vacuo, filtration and subsequent recrystallization from Et2O/hexanes (approximately 1:3 by volume) produced blocky yellow crystals, from which a crystal suitable for diffractometry was selected.

Refinement

Refinement of all H-atoms was done using isotropic idealized riding models. The largest four peaks in electron density in the model appear in the d-orbitals of chromium, and midway along C9—C10 and C1—C7 bonds.

Figures

Fig. 1.
View of I (50% probability displacement ellipsoids) with the dioxolane ring oriented towards the metal center.
Fig. 2.
Packing view slightly off of axis b with two unit cells in each dimension.
Fig. 3.
The reaction scheme for the synthesis of I through II Conditions: a) HOCH2CH2OH, PhMe, p-TsOH, 12 h, 25 °C. b) Cr(CO)6, Bu2O/THF (10:1), reflux, 40 h.

Crystal data

[Cr(C10H12O2)(CO)3]Z = 2
Mr = 300.23F(000) = 308
Triclinic, P1Dx = 1.609 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.1950 (3) ÅCell parameters from 8653 reflections
b = 7.2120 (3) Åθ = 3.3–68.5°
c = 13.9235 (6) ŵ = 7.74 mm1
α = 75.573 (2)°T = 173 K
β = 79.277 (2)°Block, yellow
γ = 62.734 (1)°0.11 × 0.08 × 0.08 mm
V = 619.79 (5) Å3

Data collection

Bruker Proteum diffractometer2163 independent reflections
Radiation source: fine-focus rotating anode2066 reflections with I > 2σ(I)
osmic mirrorsRint = 0.028
Area detector scansθmax = 68.7°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −8→8
Tmin = 0.489, Tmax = 0.587k = −8→8
13788 measured reflectionsl = −16→16

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028w = 1/[σ2(Fo2) + (0.0421P)2 + 0.2689P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.34 e Å3
2163 reflectionsΔρmin = −0.19 e Å3
172 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cr10.56963 (4)0.54830 (4)0.67821 (2)0.01624 (12)
O10.5396 (2)0.9647 (2)0.83565 (10)0.0215 (3)
O20.64557 (19)0.6261 (2)0.92482 (9)0.0200 (3)
O1C0.9718 (2)0.2980 (2)0.77613 (11)0.0285 (3)
O3C0.7158 (3)0.1574 (2)0.59248 (11)0.0332 (4)
O2C0.7899 (3)0.7234 (2)0.50035 (13)0.0394 (4)
C70.4720 (3)0.8035 (3)0.87807 (14)0.0189 (4)
C90.8237 (3)0.6734 (3)0.90280 (15)0.0223 (4)
H9A0.95170.55010.88440.027*
H9B0.84830.71420.96040.027*
C50.3036 (3)0.4871 (3)0.75700 (15)0.0212 (4)
H50.29210.35650.77330.025*
C10.4040 (3)0.7366 (3)0.79966 (14)0.0182 (4)
C20.3431 (3)0.8710 (3)0.70791 (14)0.0192 (4)
H20.357710.69070.023*
C3O0.6577 (3)0.3107 (3)0.62306 (14)0.0228 (4)
C100.7633 (3)0.8586 (3)0.81534 (15)0.0233 (4)
H10A0.83050.9520.81440.028*
H10B0.80120.80880.75120.028*
C30.2600 (3)0.8157 (3)0.64066 (14)0.0219 (4)
H30.21910.90750.57860.026*
C60.3853 (3)0.5420 (3)0.82357 (14)0.0189 (4)
H60.42850.44870.8850.023*
C1O0.8162 (3)0.4006 (3)0.73882 (14)0.0203 (4)
C40.2380 (3)0.6255 (3)0.66549 (15)0.0229 (4)
H40.17930.58990.62110.027*
C2O0.7044 (3)0.6586 (3)0.56913 (16)0.0256 (4)
C80.2905 (3)0.8842 (3)0.95580 (14)0.0235 (4)
H8A0.33490.92661.00590.035*
H8B0.24720.77120.9880.035*
H8C0.17231.00680.92370.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cr10.01584 (17)0.01495 (17)0.01543 (18)−0.00518 (12)−0.00099 (12)−0.00184 (11)
O10.0236 (7)0.0172 (6)0.0221 (7)−0.0082 (5)−0.0042 (6)−0.0003 (5)
O20.0184 (6)0.0184 (6)0.0191 (7)−0.0061 (5)−0.0045 (5)0.0017 (5)
O1C0.0184 (7)0.0246 (7)0.0405 (9)−0.0037 (6)−0.0096 (6)−0.0085 (6)
O3C0.0481 (9)0.0220 (7)0.0257 (8)−0.0089 (7)−0.0069 (7)−0.0080 (6)
O2C0.0429 (9)0.0283 (8)0.0347 (9)−0.0147 (7)0.0155 (8)−0.0002 (7)
C70.0196 (9)0.0157 (9)0.0176 (9)−0.0056 (7)−0.0026 (8)−0.0001 (7)
C90.0208 (9)0.0233 (10)0.0234 (10)−0.0097 (8)−0.0048 (8)−0.0030 (8)
C50.0156 (8)0.0211 (9)0.0259 (11)−0.0088 (7)0.0025 (8)−0.0040 (8)
C10.0132 (8)0.0191 (9)0.0161 (9)−0.0028 (7)0.0013 (7)−0.0033 (7)
C20.0164 (8)0.0148 (8)0.0200 (10)−0.0021 (7)−0.0001 (7)−0.0029 (7)
C3O0.0249 (10)0.0231 (10)0.0173 (10)−0.0090 (8)−0.0048 (8)0.0012 (8)
C100.0231 (9)0.0238 (10)0.0236 (10)−0.0116 (8)−0.0018 (8)−0.0025 (8)
C30.0171 (9)0.0219 (9)0.0188 (10)−0.0019 (8)−0.0047 (8)−0.0016 (7)
C60.0156 (8)0.0203 (9)0.0161 (9)−0.0063 (7)0.0016 (7)−0.0001 (7)
C1O0.0222 (10)0.0194 (9)0.0209 (10)−0.0107 (8)0.0038 (8)−0.0073 (7)
C40.0150 (8)0.0278 (10)0.0252 (10)−0.0067 (8)−0.0037 (8)−0.0075 (8)
C2O0.0252 (10)0.0170 (9)0.0274 (12)−0.0040 (8)−0.0005 (9)−0.0036 (8)
C80.0241 (9)0.0220 (10)0.0188 (10)−0.0053 (8)−0.0013 (8)−0.0038 (7)

Geometric parameters (Å, °)

Cr1—C1O1.837 (2)C9—H9A0.99
Cr1—C3O1.846 (2)C9—H9B0.99
Cr1—C2O1.854 (2)C5—C61.401 (3)
Cr1—C52.1942 (18)C5—C41.415 (3)
Cr1—C62.2062 (19)C5—H50.95
Cr1—C42.2197 (18)C1—C21.402 (3)
Cr1—C32.2248 (18)C1—C61.422 (3)
Cr1—C22.2355 (18)C2—C31.417 (3)
Cr1—C12.2440 (18)C2—H20.95
O1—C71.416 (2)C10—H10A0.99
O1—C101.437 (2)C10—H10B0.99
O2—C71.430 (2)C3—C41.403 (3)
O2—C91.434 (2)C3—H30.95
O1C—C1O1.156 (2)C6—H60.95
O3C—C3O1.150 (2)C4—H40.95
O2C—C2O1.155 (3)C8—H8A0.98
C7—C81.519 (3)C8—H8B0.98
C7—C11.530 (3)C8—H8C0.98
C9—C101.520 (3)
C1O—Cr1—C3O85.12 (8)C6—C5—Cr171.91 (10)
C1O—Cr1—C2O90.23 (9)C4—C5—Cr172.29 (11)
C3O—Cr1—C2O88.90 (9)C6—C5—H5119.9
C1O—Cr1—C5115.71 (8)C4—C5—H5119.9
C3O—Cr1—C588.65 (8)Cr1—C5—H5128.1
C2O—Cr1—C5153.62 (8)C2—C1—C6119.20 (17)
C1O—Cr1—C691.04 (8)C2—C1—C7121.36 (16)
C3O—Cr1—C6114.92 (8)C6—C1—C7119.23 (16)
C2O—Cr1—C6156.17 (8)C2—C1—Cr171.43 (10)
C5—Cr1—C637.12 (7)C6—C1—Cr169.92 (10)
C1O—Cr1—C4152.90 (8)C7—C1—Cr1135.38 (12)
C3O—Cr1—C490.08 (8)C1—C2—C3120.40 (17)
C2O—Cr1—C4116.37 (8)C1—C2—Cr172.09 (10)
C5—Cr1—C437.38 (7)C3—C2—Cr171.06 (10)
C6—Cr1—C466.92 (7)C1—C2—H2119.8
C1O—Cr1—C3157.39 (8)C3—C2—H2119.8
C3O—Cr1—C3117.47 (8)Cr1—C2—H2129.5
C2O—Cr1—C391.19 (8)O3C—C3O—Cr1177.08 (17)
C5—Cr1—C366.90 (7)O1—C10—C9101.71 (15)
C6—Cr1—C378.82 (7)O1—C10—H10A111.4
C4—Cr1—C336.80 (7)C9—C10—H10A111.4
C1O—Cr1—C2120.35 (8)O1—C10—H10B111.4
C3O—Cr1—C2154.47 (8)C9—C10—H10B111.4
C2O—Cr1—C292.49 (8)H10A—C10—H10B109.3
C5—Cr1—C278.90 (7)C4—C3—C2120.15 (17)
C6—Cr1—C266.52 (7)C4—C3—Cr171.40 (10)
C4—Cr1—C266.54 (7)C2—C3—Cr171.89 (10)
C3—Cr1—C237.05 (7)C4—C3—H3119.9
C1O—Cr1—C193.34 (7)C2—C3—H3119.9
C3O—Cr1—C1152.18 (8)Cr1—C3—H3129.1
C2O—Cr1—C1118.90 (8)C5—C6—C1120.38 (17)
C5—Cr1—C166.98 (7)C5—C6—Cr170.98 (11)
C6—Cr1—C137.27 (7)C1—C6—Cr172.81 (11)
C4—Cr1—C178.72 (7)C5—C6—H6119.8
C3—Cr1—C166.38 (7)C1—C6—H6119.8
C2—Cr1—C136.48 (7)Cr1—C6—H6128.7
C7—O1—C10106.41 (13)O1C—C1O—Cr1176.41 (16)
C7—O2—C9108.32 (13)C3—C4—C5119.66 (18)
O1—C7—O2106.85 (14)C3—C4—Cr171.80 (11)
O1—C7—C8108.85 (15)C5—C4—Cr170.34 (10)
O2—C7—C8109.64 (15)C3—C4—H4120.2
O1—C7—C1112.00 (15)C5—C4—H4120.2
O2—C7—C1109.66 (14)Cr1—C4—H4130.2
C8—C7—C1109.78 (15)O2C—C2O—Cr1178.51 (18)
O2—C9—C10103.74 (14)C7—C8—H8A109.5
O2—C9—H9A111C7—C8—H8B109.5
C10—C9—H9A111H8A—C8—H8B109.5
O2—C9—H9B111C7—C8—H8C109.5
C10—C9—H9B111H8A—C8—H8C109.5
H9A—C9—H9B109H8B—C8—H8C109.5
C6—C5—C4120.18 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2246).

References

  • Bitterwolf, T. E. (1988). Polyhedron, 7, 1377–1382.
  • Bruker (1998). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). PROTEUM2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Mahaffy, C. A. L. & Pauson, P. L. (1990). Inorg. Synth.28, 136–140.
  • Merritt, E. A. & Bacon, D. J. (1997). Methods in Enzymology, Vol. 277, pp. 505–524. New York: Academic Press. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography