PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): i12.
Published online 2010 January 27. doi:  10.1107/S1600536810002801
PMCID: PMC2979857

NASICON-type Na3V2(PO4)3

Abstract

Single crystals of the title compound, tris­odium divanadium(III) tris­(orthophosphate), were grown from a self-flux in the system Na4P2O7–NaVP2O7. Na3V2(PO4)3 belongs to the family of NASICON-related structures and is built up from isolated [VO6] octa­hedra (3. symmetry) and [PO4] tetra­hedra (.2 symmetry) inter­linked via corners to establish the framework anion [V2(PO4)3]3−. The two independent Na+ cations are partially occupied [site-occupancy factors = 0.805 (18) and 0.731 (7)] and are located in channels with two different oxygen environments, viz sixfold coordination for the first (An external file that holds a picture, illustration, etc.
Object name is e-66-00i12-efi1.jpg. symmetry) and eightfold for the second (.2 symmetry) Na+ cation.

Related literature

For structures and properties of complex phosphates with general formula Na3 M III 2(PO4)3 (M III = Sc, Fe, Cr), see: Collin et al. (1986 [triangle]); Genkina et al. (1991 [triangle]); Lazoryak et al. (1980 [triangle]); Lucazeau et al. (1986 [triangle]); Masquelier et al. (1992 [triangle]); Susman et al. (1983 [triangle]). For preparation of NaVP2O7 which was used as an educt for crystal growth of the title compound, see: Zatovsky et al. (1999 [triangle]).

Experimental

Crystal data

  • Na3V2(PO4)3
  • M r = 455.76
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-66-00i12-efi2.jpg
  • a = 8.7288 (2) Å
  • c = 21.8042 (7) Å
  • V = 1438.73 (7) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 2.66 mm−1
  • T = 293 K
  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur-3 CCD diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.635, T max = 0.780
  • 12580 measured reflections
  • 1331 independent reflections
  • 1153 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.075
  • S = 1.1
  • 1331 reflections
  • 37 parameters
  • Δρmax = 1.12 e Å−3
  • Δρmin = −0.74 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and enCIFer (Allen et al., 2004 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002801/wm2293sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002801/wm2293Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to Professor Vyacheslav N. Baumer from STC "Institute for Single Crystals", NAS of Ukraine, Kharkiv, Ukraine, for the single-crystal measurements.

supplementary crystallographic information

Comment

The structures and properties of complex phosphates with general formula Na3MIII2(PO4)3 (MIII - Sc, Fe, Cr) have been intensively investigated, for instance: (Collin et al., 1986; Genkina et al., 1991; Lazoryak et al., 1980; Lucazeau et al., 1986; Masquelier et al., 1992; Susman et al., 1983). The structure of NASICON-type Na3V2(PO4)3, (I), is reported here.

In the asymmetric unit of (I) (Fig. 1) there is one V and one P atom, while other,atoms (Na and O) are represented in two distinct positions each. The main building block of (I) (Fig. 2) involves two VO6 octahedra interlinked by three phosphate groups lying along the c axis. As a result of the block aggregation, a three-dimensional framework with an overall composition of [V2(PO4)3]3- is organized (Fig. 3).

Sodium atoms are located in the voids of the framework with six- (position 6b) and eightfold (18b) coordination when a cut-off distance of 2.9 Å is considered.

Experimental

Crystals of (I) were obtained in the system Na4P2O7—NaVP2O7 using a high-temperature crystallization technique. Initial NaVP2O7 was prepared in accordance to Zatovsky et al. (1999). A thoroughly ground mixture of Na4P2O7 and NaVP2O7 (ratio 1:3) was heated up to 1343 K and then kept for 2 h in a sealed silica tube under vacuum. Then it was cooled down to 823 K with a rate of 5 K/h and left in the furnace to reach room temperature. The final product, green prismatic crystals, was leached out from the solidified melt with boiling water.

Refinement

After refinement of a basic model and an accurate definition of the atom positions, the occupancy of Na1 and Na2 sites were refined freely and were finally restrained to meet the criterion for charge balance. The highest peak and the deepest hole in the final difference map is located at 0.00 Å from Na1 (1.12 e/Å3) and 0.60 from Na2 (-0.74 e/Å3) respectively.

Figures

Fig. 1.
The asymmetric unit of Na3V2(PO4)3 with displacement ellipsoids at the 50% probability level.
Fig. 2.
The central building block [V2(PO4)3] in the structure of compound (I).
Fig. 3.
The view of the structure of compound (I) on the ab plane.

Crystal data

Na3V2(PO4)3Dx = 3.156 Mg m3
Mr = 455.76Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 12580 reflections
Hall symbol: -R 3 2"cθ = 3.3–45.0°
a = 8.7288 (2) ŵ = 2.66 mm1
c = 21.8042 (7) ÅT = 293 K
V = 1438.73 (7) Å3Prism, green
Z = 60.20 × 0.15 × 0.10 mm
F(000) = 1320

Data collection

Oxford Diffraction Xcalibur-3 CCD diffractometer1331 independent reflections
Radiation source: fine-focus sealed tube1153 reflections with I > 2σ(I)
graphiteRint = 0.063
[var phi] and ω scansθmax = 45°, θmin = 3.3°
Absorption correction: multi-scan (Blessing, 1995)h = −17→16
Tmin = 0.635, Tmax = 0.780k = −17→17
12580 measured reflectionsl = −43→41

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032w = 1/[σ2(Fo2) + (0.0264P)2 + 5.1429P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 1.1Δρmax = 1.12 e Å3
1331 reflectionsΔρmin = −0.73 e Å3
37 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.0056 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
V10.33330.66670.019498 (13)0.00690 (6)
Na10.33330.66670.16670.149 (5)0.805 (18)
Na20.66670.96726 (19)0.08330.0522 (10)0.731 (7)
P1−0.04273 (5)0.33330.08330.00866 (8)
O10.14193 (13)0.49765 (14)0.07762 (5)0.01643 (16)
O20.54047 (16)0.84480 (17)−0.02643 (7)0.0259 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
V10.00643 (7)0.00643 (7)0.00784 (10)0.00321 (4)00
Na10.218 (8)0.218 (8)0.0111 (14)0.109 (4)00
Na20.0224 (8)0.0170 (5)0.119 (2)0.0112 (4)−0.0354 (11)−0.0177 (5)
P10.00635 (10)0.00714 (14)0.01276 (15)0.00357 (7)0.00152 (5)0.00305 (11)
O10.0089 (3)0.0130 (3)0.0220 (4)0.0015 (3)0.0048 (3)0.0057 (3)
O20.0185 (4)0.0223 (5)0.0322 (6)0.0067 (4)0.0143 (4)0.0151 (4)

Geometric parameters (Å, °)

V1—O2i1.9693 (10)Na2—O1ii2.3883 (12)
V1—O21.9693 (11)Na2—O1vi2.3883 (12)
V1—O2ii1.9693 (10)Na2—O1i2.4448 (19)
V1—O1ii2.0271 (9)Na2—O1vii2.4449 (19)
V1—O12.0271 (9)Na2—O2viii2.6280 (16)
V1—O1i2.0271 (9)Na2—O22.6281 (16)
V1—Na2i3.1070 (6)Na2—O2ix2.8352 (19)
V1—Na23.1070 (7)Na2—O2x2.8352 (19)
V1—Na2ii3.1070 (6)Na2—P1xi2.9222 (11)
V1—Na13.2096 (3)Na2—P1ii2.9222 (11)
Na1—O12.5045 (11)Na2—P1i2.9968 (17)
Na1—O1ii2.5045 (11)P1—O2xii1.5227 (12)
Na1—O1i2.5045 (11)P1—O2xiii1.5227 (12)
Na1—O1iii2.5045 (11)P1—O11.5358 (10)
Na1—O1iv2.5045 (11)P1—O1xiv1.5359 (10)
Na1—O1v2.5046 (11)P1—Na2xv2.9222 (11)
Na1—V1iv3.2081 (2)P1—Na2i2.9222 (11)
Na1—Na2i3.3193 (6)P1—Na2ii2.9968 (17)
Na1—Na2v3.3193 (6)O1—Na2i2.3883 (12)
Na1—Na23.3193 (6)O1—Na2ii2.4448 (19)
Na1—Na2ii3.3205 (6)
O2i—V1—O296.44 (6)O1ii—Na2—O268.20 (4)
O2i—V1—O2ii96.44 (6)O1vi—Na2—O2115.98 (4)
O2—V1—O2ii96.44 (6)O1i—Na2—O266.40 (4)
O2i—V1—O1ii88.22 (5)O1vii—Na2—O293.51 (6)
O2—V1—O1ii89.72 (5)O2viii—Na2—O2157.25 (9)
O2ii—V1—O1ii171.80 (6)O1ii—Na2—O2ix54.99 (4)
O2i—V1—O189.72 (5)O1vi—Na2—O2ix108.39 (6)
O2—V1—O1171.80 (6)O1i—Na2—O2ix115.94 (4)
O2ii—V1—O188.22 (5)O1vii—Na2—O2ix151.11 (4)
O1ii—V1—O185.05 (5)O2viii—Na2—O2ix85.67 (3)
O2i—V1—O1i171.80 (6)O2—Na2—O2ix112.13 (5)
O2—V1—O1i88.22 (5)O1ii—Na2—O2x108.39 (6)
O2ii—V1—O1i89.72 (5)O1vi—Na2—O2x54.99 (4)
O1ii—V1—O1i85.05 (5)O1i—Na2—O2x151.10 (4)
O1—V1—O1i85.05 (5)O1vii—Na2—O2x115.94 (4)
O1—Na1—O1ii66.33 (3)O2viii—Na2—O2x112.13 (5)
O1—Na1—O1i66.33 (3)O2—Na2—O2x85.67 (3)
O1ii—Na1—O1i66.33 (3)O2ix—Na2—O2x80.45 (7)
O1—Na1—O1iii113.67 (3)O2xii—P1—O2xiii111.67 (12)
O1ii—Na1—O1iii180O2xii—P1—O1106.07 (7)
O1i—Na1—O1iii113.67 (3)O2xiii—P1—O1112.18 (7)
O1—Na1—O1iv180O2xii—P1—O1xiv112.19 (7)
O1ii—Na1—O1iv113.67 (3)O2xiii—P1—O1xiv106.07 (7)
O1i—Na1—O1iv113.67 (3)O1—P1—O1xiv108.74 (9)
O1iii—Na1—O1iv66.33 (3)P1—O1—V1145.95 (7)
O1—Na1—O1v113.67 (3)P1—O1—Na2i93.73 (6)
O1ii—Na1—O1v113.67 (3)V1—O1—Na2i89.05 (5)
O1i—Na1—O1v180P1—O1—Na2ii94.93 (5)
O1iii—Na1—O1v66.33 (3)V1—O1—Na2ii87.50 (4)
O1iv—Na1—O1v66.33 (3)Na2i—O1—Na2ii169.09 (5)
O1ii—Na2—O1vi160.52 (9)P1—O1—Na1124.53 (6)
O1ii—Na2—O1i69.07 (5)V1—O1—Na189.52 (4)
O1vi—Na2—O1i130.40 (6)Na2i—O1—Na185.40 (5)
O1ii—Na2—O1vii130.40 (6)Na2ii—O1—Na184.23 (4)
O1vi—Na2—O1vii69.07 (5)P1xvi—O2—V1151.38 (10)
O1i—Na2—O1vii61.41 (6)P1xvi—O2—Na2120.77 (8)
O1ii—Na2—O2viii115.98 (4)V1—O2—Na283.72 (5)
O1vi—Na2—O2viii68.20 (4)P1xvi—O2—Na2xvii77.85 (5)
O1i—Na2—O2viii93.51 (6)V1—O2—Na2xvii107.30 (6)
O1vii—Na2—O2viii66.40 (4)Na2—O2—Na2xvii113.64 (7)

Symmetry codes: (i) −y+1, xy+1, z; (ii) −x+y, −x+1, z; (iii) xy+2/3, x+1/3, −z+1/3; (iv) −x+2/3, −y+4/3, −z+1/3; (v) y−1/3, −x+y+1/3, −z+1/3; (vi) xy+4/3, −y+5/3, −z+1/6; (vii) y+1/3, x+2/3, −z+1/6; (viii) −x+4/3, −x+y+2/3, −z+1/6; (ix) −y+4/3, −x+5/3, z+1/6; (x) y, −x+y+1, −z; (xi) x+1, y+1, z; (xii) x−2/3, xy+2/3, z+1/6; (xiii) y−1, −x+y, −z; (xiv) xy+1/3, −y+2/3, −z+1/6; (xv) x−1, y−1, z; (xvi) xy+1, x+1, −z; (xvii) xy+1, x, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2293).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Collin, G., Comes, R., Boilot, J. P. & Colomban, P. (1986). J. Phys. Chem. Solids, 47, 843–854.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Genkina, E. A., Kalinin, V. B., Maksimov, B. A. & Golubev, A. M. (1991). Kristallografiya, 36, 1126–1130.
  • Lazoryak, B. I., Kalinin, V. B., Stefanovich, S. Yu. & Efremov, V. A. (1980). Dokl. Akad. Nauk SSSR, 250, 861–864.
  • Lucazeau, G., Barj, M., Soubeyroux, J. L., Dianoux, A. J. & Delmas, C. (1986). Solid State Ionics, 1819, 959–963.
  • Masquelier, C., Wurm, C., Rodriguez-Carvajal, J., Gaubicher, J. & Nazar, L. (1992). Phase Trans.38, 127–220.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Susman, S., Delbecq, C. J., Brun, T. O. & Prince, E. (1983). Solid State Ionics, 9, 839–844.
  • Zatovsky, I. V., Slobodyanik, N. S., Lisnyk, V. V. & Stratiychuk, D. A. (1999). Ukr. Khim. Zh.65, 98–103.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography