PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o344.
Published online 2010 January 13. doi:  10.1107/S1600536810000851
PMCID: PMC2979854

N,N′-Dicyclo­hexyl-N′′-(4-nitro­benzo­yl)phospho­ric triamide

Abstract

The P atom in the title compound, C19H29N4O4P, exhibits a tetra­hedral coordination and the phosphoryl and carbonyl groups are anti to each other. Adjacent mol­ecules are linked by N—H(...)O hydrogen bonds to form a layer motif.

Related literature

For a phosphate compound containing the C(O)NHP(O) unit, see: Pourayoubi & Sabbaghi (2007 [triangle]). For phosphoric triamide, see: Pourayoubi & Sabbaghi (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o344-scheme1.jpg

Experimental

Crystal data

  • C19H29N4O4P
  • M r = 408.43
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o344-efi1.jpg
  • a = 10.4091 (7) Å
  • b = 10.8527 (9) Å
  • c = 11.1116 (10) Å
  • α = 99.764 (7)°
  • β = 110.881 (7)°
  • γ = 108.158 (7)°
  • V = 1057.25 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 295 K
  • 0.52 × 0.31 × 0.29 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire3 (Gemini Mo) detector
  • 6746 measured reflections
  • 3713 independent reflections
  • 2915 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.115
  • S = 1.11
  • 3713 reflections
  • 254 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000851/ng2716sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000851/ng2716Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support of this investigation by Islamic Azad University–Zanjan Branch is gratefully acknowledged.

supplementary crystallographic information

Comment

Following our previous works about phosphorus compounds containing C(O)NHP(O) moiety such as P(O)[NHC(O)C6H4(4-NO2)][N(CH(CH3)2)(CH2C6H5)]2 (Pourayoubi & Sabbaghi, 2009) and [(C6H5CH2)(CH(CH3)2)NH2][CCl3C(O)NHP(O)(O)(OCH3)] (Pourayoubi & Sabbaghi, 2007), we report here on the synthesis and crystal structure of a new phosphaza-analogous of β-diketone, P(O)[NHC(O)C6H4(4-NO2)][NHC6H11]2. Single crystals of title compound were obtained from a solution of CH3CN and CH3OH after slow evaporation at room temperature. The phosphoryl and the carbonyl groups are anti and the phosphorus atom has a slightly distorted tetrahedral configuration (Fig. 1). The bond angles around the P atom are in the range of 101.89 (8)°-119.46 (8)°. The P—N3 bond length (1.6966 (14) Å) is longer than the P—N1 and P—N2 bond lengths (1.6174 (16) Å and 1.6233 (14) Å). In the crystal network of title compound, P(O)[NHC(O)C6H4(4-NO2)][NHC6H11]2, molecules are linked via P═O···H—N (O1···N3 = 2.8229 (18) Å) and C═O···H—N (O2···N2 = 3.0578 (18) Å) hydrogen bonds in the linear arrangement along a axis. Moreover, molecules are aggregated through the weak hydrogen bonds Onitro···H—N (O4···N1 = 3.305 (2) Å) parallel to the c axis and π–π stacking interactions between neighboring 4-NO2—C6H4—C(O)NH– moieties [centroid–centroid distance = 3.759 (1) Å], Fig. 2.

Experimental

The reaction of phosphorus pentachloride (4.165 g, 20 mmol) and 4-nitrobenzamide (3.323 g, 20 mmol) in dry CCl4 (70 ml) at 353 K (3 h) and then the treatment of formic acid (0.921 g, 20 mmol) at room temperature leads to 4-NO2—C6H4C(O)NHP(O)Cl2. The solid (4-NO2—C6H4C(O)NHP(O)Cl2) was washed with dry CCl4. To a solution of (0.708 g, 2.5 mmol) 4-NO2—C6H4C(O)NHP(O)Cl2 in CH3CN (40 ml), a solution of cyclohexylamine (0.992 g, 10 mmol) in CH3CN (10 ml) was added dropwise at 273 K. After 6 h of stirring, the solvent was evaporated in vacuum. The solid was washed with distilled water. Single crystals were obtained from a solution of the title compound in CH3CN and CH3OH after slow evaporation at room temperature. IR (KBr, cm-1): 3056, 2922, 2870, 2770, 2689, 2641, 2589, 2489, 2412, 2169, 2007, 1954, 1678, 1602, 1515, 1446, 1344, 1230, 1039, 963, 860, 736, 702.

Refinement

H atoms were placed in the calculated positions and included in the refinement in a riding-model approximation with C—H = 0.93–0.98 Å, N—H = 0.86Å and Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound, indicating the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level, the H atoms were omitted for clarity.
Fig. 2.
Part of the crystal structure with hydrogen bonds shown as dashed lines and the centroid of phenyl rings as ball representation.

Crystal data

C19H29N4O4PZ = 2
Mr = 408.43F(000) = 436
Triclinic, P1Dx = 1.283 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4091 (7) ÅCell parameters from 4113 reflections
b = 10.8527 (9) Åθ = 3.3–29.2°
c = 11.1116 (10) ŵ = 0.16 mm1
α = 99.764 (7)°T = 295 K
β = 110.881 (7)°Prism, colorles
γ = 108.158 (7)°0.52 × 0.31 × 0.28 mm
V = 1057.25 (18) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire3 (Gemini Mo) detector2915 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.016
graphiteθmax = 25.0°, θmin = 3.3°
Detector resolution: 16.3280 pixels mm-1h = −12→12
ω scansk = −12→11
6746 measured reflectionsl = −11→13
3713 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.115w = 1/[σ2(Fo2) + (0.068P)2] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3713 reflectionsΔρmax = 0.38 e Å3
254 parametersΔρmin = −0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)

Special details

Experimental. #__ type_ start__ end____ width___ exp.time_ 1 omega -7.00 53.00 1.0000 3.6500 omega____ theta____ kappa____ phi______ frames - 21.1985 77.0000 150.0000 60#__ type_ start__ end____ width___ exp.time_ 2 omega -4.00 91.00 1.0000 3.6500 omega____ theta____ kappa____ phi______ frames - 21.1985 77.0000 30.0000 95#__ type_ start__ end____ width___ exp.time_ 3 omega -51.00 47.00 1.0000 3.6500 omega____ theta____ kappa____ phi______ frames - 21.1985 - 37.0000 240.0000 98#__ type_ start__ end____ width___ exp.time_ 4 omega -51.00 34.00 1.0000 3.6500 omega____ theta____ kappa____ phi______ frames - 21.1985 - 37.0000 150.0000 85#__ type_ start__ end____ width___ exp.time_ 5 omega -6.00 33.00 1.0000 3.6500 omega____ theta____ kappa____ phi______ frames - 21.1985 77.0000 270.0000 39
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
P0.69819 (5)0.43097 (5)0.04401 (5)0.03153 (17)
O10.59696 (13)0.43337 (14)0.10845 (13)0.0427 (3)
O20.86256 (14)0.52969 (15)−0.11240 (13)0.0494 (4)
O30.6421 (2)0.7685 (2)−0.64611 (17)0.0824 (6)
O40.4469 (2)0.7627 (2)−0.62270 (19)0.0973 (7)
N10.67651 (16)0.28654 (15)−0.04742 (16)0.0416 (4)
H10.61030.2583−0.13050.050*
N20.87293 (15)0.49971 (15)0.15558 (14)0.0337 (4)
H20.93360.46610.14310.040*
N30.66090 (15)0.51363 (15)−0.07230 (14)0.0329 (4)
H30.58440.5345−0.08980.039*
N40.5646 (2)0.74999 (18)−0.58613 (18)0.0558 (5)
C110.7533 (2)0.19656 (18)−0.00942 (18)0.0385 (4)
H110.86160.25000.02630.046*
C120.7254 (3)0.1419 (2)0.0981 (2)0.0670 (7)
H12A0.61810.09400.06750.080*
H12B0.76350.21720.17990.080*
C130.8027 (4)0.0438 (3)0.1304 (3)0.0905 (10)
H13A0.91080.09450.17200.109*
H13B0.77650.00440.19490.109*
C140.7562 (3)−0.0698 (2)0.0036 (3)0.0779 (8)
H14A0.8118−0.12620.02630.093*
H14B0.6500−0.1271−0.03240.093*
C150.7858 (3)−0.0128 (3)−0.1009 (3)0.0711 (7)
H15A0.7513−0.0870−0.18250.085*
H15B0.89310.0377−0.06780.085*
C160.7059 (3)0.0814 (2)−0.1346 (2)0.0537 (6)
H16A0.72900.1189−0.20120.064*
H16B0.59810.0292−0.17390.064*
C210.9318 (2)0.61724 (18)0.27734 (18)0.0372 (4)
H210.85430.60580.31010.045*
C220.9661 (3)0.7503 (2)0.2469 (2)0.0772 (8)
H22A0.87380.74970.18230.093*
H22B1.03440.75860.20510.093*
C231.0354 (4)0.8726 (3)0.3722 (3)0.0995 (10)
H23A1.06170.95570.34790.119*
H23B0.96250.87080.40780.119*
C241.1732 (3)0.8739 (3)0.4796 (3)0.0952 (11)
H24A1.21180.95050.56050.114*
H24B1.25030.88530.44770.114*
C251.1371 (3)0.7418 (3)0.5140 (2)0.0760 (8)
H25A1.06720.73500.55400.091*
H25B1.22840.74260.58030.091*
C261.0679 (2)0.6172 (2)0.3871 (2)0.0556 (6)
H26A1.14220.61820.35330.067*
H26B1.03950.53420.41100.067*
C300.74698 (18)0.54829 (18)−0.13909 (17)0.0333 (4)
C310.69513 (18)0.60806 (17)−0.25097 (17)0.0314 (4)
C320.79254 (19)0.65206 (19)−0.30874 (19)0.0399 (5)
H320.88650.6487−0.27390.048*
C330.7513 (2)0.7005 (2)−0.41680 (19)0.0434 (5)
H330.81630.7296−0.45560.052*
C340.6122 (2)0.70486 (19)−0.46623 (17)0.0396 (5)
C350.5142 (2)0.6639 (2)−0.41019 (19)0.0426 (5)
H350.42100.6688−0.44490.051*
C360.55611 (19)0.61538 (19)−0.30166 (18)0.0387 (4)
H360.49110.5876−0.26250.046*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P0.0300 (3)0.0420 (3)0.0339 (3)0.0222 (2)0.0166 (2)0.0181 (2)
O10.0394 (7)0.0653 (9)0.0482 (8)0.0331 (6)0.0286 (6)0.0328 (7)
O20.0414 (7)0.0855 (11)0.0506 (8)0.0435 (7)0.0294 (7)0.0358 (8)
O30.0942 (13)0.1094 (15)0.0620 (11)0.0376 (11)0.0452 (11)0.0528 (11)
O40.0850 (13)0.159 (2)0.0865 (13)0.0732 (13)0.0370 (11)0.0858 (14)
N10.0420 (8)0.0447 (9)0.0346 (8)0.0248 (7)0.0071 (7)0.0117 (7)
N20.0320 (8)0.0443 (9)0.0326 (8)0.0249 (7)0.0149 (7)0.0108 (7)
N30.0298 (7)0.0472 (9)0.0370 (8)0.0261 (7)0.0186 (7)0.0207 (7)
N40.0583 (11)0.0567 (12)0.0434 (10)0.0178 (9)0.0139 (9)0.0231 (9)
C110.0371 (9)0.0358 (10)0.0421 (10)0.0194 (8)0.0116 (9)0.0146 (9)
C120.1058 (19)0.0580 (14)0.0472 (13)0.0402 (14)0.0349 (13)0.0232 (12)
C130.140 (3)0.0675 (17)0.0624 (16)0.0553 (17)0.0237 (17)0.0380 (15)
C140.0989 (19)0.0490 (14)0.0778 (17)0.0416 (14)0.0189 (16)0.0225 (14)
C150.0883 (18)0.0575 (15)0.0794 (17)0.0467 (14)0.0356 (15)0.0188 (14)
C160.0703 (14)0.0544 (13)0.0483 (12)0.0356 (11)0.0280 (11)0.0199 (11)
C210.0390 (10)0.0445 (11)0.0358 (10)0.0222 (8)0.0204 (8)0.0114 (9)
C220.115 (2)0.0475 (14)0.0572 (15)0.0301 (14)0.0266 (15)0.0183 (12)
C230.140 (3)0.0415 (15)0.088 (2)0.0229 (16)0.036 (2)0.0070 (15)
C240.090 (2)0.069 (2)0.083 (2)−0.0029 (16)0.0424 (18)−0.0226 (17)
C250.0643 (15)0.105 (2)0.0405 (13)0.0401 (15)0.0111 (12)−0.0041 (14)
C260.0570 (13)0.0683 (15)0.0364 (11)0.0329 (11)0.0125 (10)0.0075 (11)
C300.0309 (9)0.0421 (10)0.0314 (9)0.0196 (8)0.0145 (8)0.0107 (8)
C310.0305 (9)0.0338 (9)0.0306 (9)0.0141 (7)0.0142 (8)0.0081 (8)
C320.0320 (9)0.0478 (11)0.0426 (11)0.0169 (8)0.0175 (8)0.0168 (9)
C330.0419 (10)0.0517 (12)0.0413 (11)0.0162 (9)0.0235 (9)0.0187 (10)
C340.0466 (11)0.0377 (10)0.0287 (9)0.0137 (8)0.0124 (9)0.0120 (8)
C350.0360 (10)0.0548 (12)0.0412 (11)0.0238 (9)0.0141 (9)0.0209 (10)
C360.0351 (9)0.0524 (12)0.0390 (10)0.0224 (9)0.0204 (9)0.0205 (9)

Geometric parameters (Å, °)

P—O11.4739 (13)C16—H16B0.9700
P—N11.6174 (16)C21—C221.502 (3)
P—N21.6233 (14)C21—C261.505 (3)
P—N31.6966 (14)C21—H210.9800
O2—C301.222 (2)C22—C231.510 (3)
O3—N41.210 (2)C22—H22A0.9700
O4—N41.206 (2)C22—H22B0.9700
N1—C111.468 (2)C23—C241.498 (4)
N1—H10.8600C23—H23A0.9700
N2—C211.473 (2)C23—H23B0.9700
N2—H20.8600C24—C251.514 (4)
N3—C301.362 (2)C24—H24A0.9700
N3—H30.8600C24—H24B0.9700
N4—C341.471 (2)C25—C261.536 (3)
C11—C121.498 (3)C25—H25A0.9700
C11—C161.509 (3)C25—H25B0.9700
C11—H110.9800C26—H26A0.9700
C12—C131.538 (3)C26—H26B0.9700
C12—H12A0.9700C30—C311.507 (2)
C12—H12B0.9700C31—C361.387 (2)
C13—C141.514 (4)C31—C321.391 (2)
C13—H13A0.9700C32—C331.374 (3)
C13—H13B0.9700C32—H320.9300
C14—C151.485 (4)C33—C341.373 (3)
C14—H14A0.9700C33—H330.9300
C14—H14B0.9700C34—C351.375 (3)
C15—C161.521 (3)C35—C361.380 (3)
C15—H15A0.9700C35—H350.9300
C15—H15B0.9700C36—H360.9300
C16—H16A0.9700
O1—P—N1119.46 (8)C22—C21—C26111.50 (17)
O1—P—N2111.42 (7)N2—C21—H21107.9
N1—P—N2105.05 (8)C22—C21—H21107.9
O1—P—N3105.89 (7)C26—C21—H21107.9
N1—P—N3101.89 (8)C21—C22—C23112.7 (2)
N2—P—N3112.93 (7)C21—C22—H22A109.0
C11—N1—P129.49 (13)C23—C22—H22A109.0
C11—N1—H1115.3C21—C22—H22B109.0
P—N1—H1115.3C23—C22—H22B109.0
C21—N2—P122.67 (11)H22A—C22—H22B107.8
C21—N2—H2118.7C24—C23—C22111.5 (3)
P—N2—H2118.7C24—C23—H23A109.3
C30—N3—P122.74 (11)C22—C23—H23A109.3
C30—N3—H3118.6C24—C23—H23B109.3
P—N3—H3118.6C22—C23—H23B109.3
O4—N4—O3122.9 (2)H23A—C23—H23B108.0
O4—N4—C34118.1 (2)C23—C24—C25110.5 (2)
O3—N4—C34118.90 (19)C23—C24—H24A109.6
N1—C11—C12112.89 (17)C25—C24—H24A109.6
N1—C11—C16109.24 (15)C23—C24—H24B109.6
C12—C11—C16110.75 (16)C25—C24—H24B109.6
N1—C11—H11107.9H24A—C24—H24B108.1
C12—C11—H11107.9C24—C25—C26111.3 (2)
C16—C11—H11107.9C24—C25—H25A109.4
C11—C12—C13111.0 (2)C26—C25—H25A109.4
C11—C12—H12A109.4C24—C25—H25B109.4
C13—C12—H12A109.4C26—C25—H25B109.4
C11—C12—H12B109.4H25A—C25—H25B108.0
C13—C12—H12B109.4C21—C26—C25111.20 (18)
H12A—C12—H12B108.0C21—C26—H26A109.4
C14—C13—C12111.5 (2)C25—C26—H26A109.4
C14—C13—H13A109.3C21—C26—H26B109.4
C12—C13—H13A109.3C25—C26—H26B109.4
C14—C13—H13B109.3H26A—C26—H26B108.0
C12—C13—H13B109.3O2—C30—N3121.79 (16)
H13A—C13—H13B108.0O2—C30—C31119.65 (16)
C15—C14—C13110.7 (2)N3—C30—C31118.55 (14)
C15—C14—H14A109.5C36—C31—C32119.53 (17)
C13—C14—H14A109.5C36—C31—C30123.97 (16)
C15—C14—H14B109.5C32—C31—C30116.44 (15)
C13—C14—H14B109.5C33—C32—C31120.64 (17)
H14A—C14—H14B108.1C33—C32—H32119.7
C14—C15—C16111.0 (2)C31—C32—H32119.7
C14—C15—H15A109.4C34—C33—C32118.64 (18)
C16—C15—H15A109.4C34—C33—H33120.7
C14—C15—H15B109.4C32—C33—H33120.7
C16—C15—H15B109.4C33—C34—C35122.12 (17)
H15A—C15—H15B108.0C33—C34—N4118.82 (18)
C11—C16—C15111.21 (18)C35—C34—N4119.03 (17)
C11—C16—H16A109.4C34—C35—C36119.04 (17)
C15—C16—H16A109.4C34—C35—H35120.5
C11—C16—H16B109.4C36—C35—H35120.5
C15—C16—H16B109.4C35—C36—C31120.01 (17)
H16A—C16—H16B108.0C35—C36—H36120.0
N2—C21—C22112.00 (16)C31—C36—H36120.0
N2—C21—C26109.51 (15)
O1—P—N1—C11−95.68 (17)C23—C24—C25—C2656.3 (3)
N2—P—N1—C1130.22 (19)N2—C21—C26—C25177.50 (18)
N3—P—N1—C11148.19 (16)C22—C21—C26—C2553.0 (3)
O1—P—N2—C21−35.25 (16)C24—C25—C26—C21−55.1 (3)
N1—P—N2—C21−166.00 (13)P—N3—C30—O2−4.9 (2)
N3—P—N2—C2183.79 (15)P—N3—C30—C31173.61 (12)
O1—P—N3—C30170.69 (13)O2—C30—C31—C36170.60 (17)
N1—P—N3—C30−63.67 (15)N3—C30—C31—C36−8.0 (3)
N2—P—N3—C3048.50 (15)O2—C30—C31—C32−6.5 (2)
P—N1—C11—C1262.5 (2)N3—C30—C31—C32174.97 (15)
P—N1—C11—C16−173.78 (14)C36—C31—C32—C33−1.1 (3)
N1—C11—C12—C13177.69 (19)C30—C31—C32—C33176.11 (16)
C16—C11—C12—C1354.8 (3)C31—C32—C33—C340.2 (3)
C11—C12—C13—C14−54.6 (3)C32—C33—C34—C350.7 (3)
C12—C13—C14—C1555.3 (3)C32—C33—C34—N4−176.94 (17)
C13—C14—C15—C16−56.7 (3)O4—N4—C34—C33−174.8 (2)
N1—C11—C16—C15178.52 (19)O3—N4—C34—C337.5 (3)
C12—C11—C16—C15−56.5 (3)O4—N4—C34—C357.5 (3)
C14—C15—C16—C1157.7 (3)O3—N4—C34—C35−170.23 (19)
P—N2—C21—C22−81.3 (2)C33—C34—C35—C36−0.7 (3)
P—N2—C21—C26154.44 (15)N4—C34—C35—C36176.95 (17)
N2—C21—C22—C23−176.5 (2)C34—C35—C36—C31−0.2 (3)
C26—C21—C22—C23−53.4 (3)C32—C31—C36—C351.1 (3)
C21—C22—C23—C2455.0 (4)C30—C31—C36—C35−175.88 (17)
C22—C23—C24—C25−55.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.543.305 (2)148
N2—H2···O2ii0.862.253.0578 (18)156
N3—H3···O1iii0.861.972.8229 (18)170

Symmetry codes: (i) −x+1, −y+1, −z−1; (ii) −x+2, −y+1, −z; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2716).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Pourayoubi, M. & Sabbaghi, F. (2007). Acta Cryst. E63, o4366.
  • Pourayoubi, M. & Sabbaghi, F. (2009). J. Chem. Crystallogr.39, 874–880.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography