PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o251.
Published online 2010 January 9. doi:  10.1107/S1600536809054828
PMCID: PMC2979851

2,7-Dibromo-9,9-bis­[(pyridin-1-ium-4-yl)meth­yl]fluorene dinitrate

Abstract

In the title compound, C25H20Br2N2 2+·2NO3 , the cation lies on a twofold rotation axis which imposes disorder of the dibromo­fluorene unit. In addition, the unique nitrate anion is disordered over two general sites of equal occupancy. The crystal structure is stabilized by inter­molecular N—H(...)O hydrogen bonds.

Related literature

For applications of bipyridine derivatives, see: Varughese & Pedireddi (2005 [triangle], 2006 [triangle]); Pedireddi & Lekshmi (2004 [triangle]); Friscic & MacGillivray (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o251-scheme1.jpg

Experimental

Crystal data

  • C25H20Br2N2 2+·2NO3
  • M r = 632.27
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o251-efi1.jpg
  • a = 14.874 (3) Å
  • b = 33.592 (7) Å
  • c = 10.720 (2) Å
  • V = 5356.2 (18) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 3.07 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.514, T max = 0.608
  • 12890 measured reflections
  • 3053 independent reflections
  • 1355 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.114
  • S = 0.91
  • 3053 reflections
  • 238 parameters
  • 77 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.18 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1443 Friedel pairs
  • Flack parameter: 0.002 (14)

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809054828/lh2955sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054828/lh2955Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the National Natural Science Foundation of Shandong (Y2007B14, Y2008B29) and Weifang University for research grants.

supplementary crystallographic information

Comment

Bipyridine compounds have been studied as spacer molecules both in organic and organic-inorganic hybrid complexes (Varughese & Pedireddi, 2005,2006) Their ability to form intermolecular hydrogen bonds is of particular interest (Pedireddi & Lekshmi, 2004; Friscic & MacGillivray, 2005). We present herein the crystal structure of the titlecompound. The asymmetric unit of the title compund is shown in Fig. 1. The cation moleclue lies on a twofold rotation axis about which the dibromofluorene moiety is disordered. Atom C1 lies on the twofold rotation axis. In addtion, the unique nitrate anion is disodered over two general sites with equall occupancies. The crystal structure is stabilized by intermoecular N-H···O hydrogen bonds.

Experimental

To a warm solution of 2,7-dibromo-9,9-(4-pyridyl-methyl)fluorene [2.55 g, 5.0 mmol] in EtOH (50 ml), HNO3(10.0 mmol) was added dropwise with stirring. The mixture turned clear yellow. 1 h later, the yellow solution was filtered, and the filtrate was evaporated at room temperature in air. Three days later, crystals suitable for an X-ray structure determination were obtained.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93-0.97 Å, and with Uiso=1.2Ueq(C). The H atom bonded to N1 was refined independently with an isotropic displacement parameter. The occupancies of the disorder components of the nitrate anion were intially refined but then fixed at 0.50:0.50.

Figures

Fig. 1.
The molecular structure of the title compound showing 30% probability displacement ellipsoids. The disorder is not shown but thinner bonds show the areas where disorder occurs.

Crystal data

C25H20Br2N22+·2NO3F(000) = 2528
Mr = 632.27Dx = 1.568 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 2016 reflections
a = 14.874 (3) Åθ = 3.3–27.9°
b = 33.592 (7) ŵ = 3.07 mm1
c = 10.720 (2) ÅT = 293 K
V = 5356.2 (18) Å3Block, yellow
Z = 80.25 × 0.20 × 0.18 mm

Data collection

Bruker SMART CCD diffractometer3053 independent reflections
Radiation source: fine-focus sealed tube1355 reflections with I > 2σ(I)
graphiteRint = 0.065
[var phi] scans and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −18→19
Tmin = 0.514, Tmax = 0.608k = −43→42
12890 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114w = 1/[σ2(Fo2) + (0.0494P)2] where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
3053 reflectionsΔρmax = 0.20 e Å3
238 parametersΔρmin = −0.18 e Å3
77 restraintsAbsolute structure: Flack (1983), 1443 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.002 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Br10.5373 (4)0.34967 (12)1.0031 (6)0.177 (2)0.50
Br20.4644 (3)0.66079 (12)0.9441 (5)0.1266 (12)0.50
C10.50000.50000.8526 (6)0.0493 (14)
C20.5086 (13)0.4687 (4)0.9446 (10)0.074 (3)0.50
C30.5195 (12)0.4279 (4)0.9302 (8)0.082 (3)0.50
H3A0.52150.41680.85080.099*0.50
C40.5274 (9)0.4036 (3)1.0347 (11)0.085 (3)0.50
C50.5244 (7)0.4202 (2)1.1534 (9)0.086 (3)0.50
H5A0.52970.40391.22330.103*0.50
C60.5136 (7)0.4610 (3)1.1677 (9)0.085 (3)0.50
H6A0.51160.47211.24720.101*0.50
C70.5057 (10)0.4853 (2)1.0633 (12)0.074 (3)0.50
C80.4931 (10)0.5280 (2)1.0631 (10)0.066 (2)0.50
C90.4851 (7)0.5582 (2)1.1511 (8)0.075 (2)0.50
H9A0.48570.55211.23570.090*0.50
C100.4761 (7)0.5975 (2)1.1126 (8)0.077 (2)0.50
H10A0.47080.61771.17150.093*0.50
C110.4752 (8)0.6066 (3)0.9861 (8)0.067 (2)0.50
C120.4832 (11)0.5765 (3)0.8981 (7)0.063 (2)0.50
H12A0.48260.58260.81350.075*0.50
C130.4922 (12)0.5371 (3)0.9366 (9)0.058 (2)0.50
N10.8313 (2)0.53409 (10)0.9320 (5)0.0682 (11)
C140.58325 (19)0.50368 (11)0.7642 (5)0.0510 (9)
H14A0.59190.47850.72170.061*
H14B0.57050.52370.70130.061*
C150.6693 (2)0.51471 (10)0.8298 (4)0.0467 (9)
C160.7043 (2)0.55303 (12)0.8175 (6)0.0694 (14)
H16A0.67220.57240.77440.083*
C170.7869 (3)0.56209 (14)0.8696 (6)0.0766 (15)
H17A0.81110.58750.86100.092*
C180.8004 (2)0.49768 (12)0.9466 (6)0.0690 (13)
H18A0.83410.47900.99000.083*
C190.7187 (2)0.48735 (11)0.8980 (5)0.0589 (11)
H19A0.69630.46180.91080.071*
O10.5248 (7)0.3942 (3)0.4656 (13)0.111 (4)0.50
O20.4986 (12)0.4542 (5)0.5171 (11)0.045 (3)0.50
O30.4155 (14)0.4101 (6)0.5905 (15)0.076 (4)0.50
N20.4807 (2)0.41997 (11)0.52359 (13)0.0733 (12)
O1A0.5534 (7)0.4013 (4)0.5514 (14)0.151 (7)0.50
O2A0.4890 (13)0.4546 (6)0.4700 (11)0.055 (3)0.50
O3A0.4017 (12)0.4069 (6)0.5454 (15)0.060 (3)0.50
H1N0.883 (3)0.5389 (11)0.968 (5)0.078 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.170 (2)0.098 (2)0.262 (6)0.0198 (17)0.038 (3)0.097 (3)
Br20.1092 (12)0.0779 (15)0.193 (4)0.0056 (9)−0.0114 (15)−0.0480 (15)
C10.037 (2)0.063 (3)0.048 (4)−0.002 (2)0.0000.000
C20.050 (5)0.108 (6)0.064 (5)0.002 (5)0.008 (5)0.028 (5)
C30.061 (5)0.113 (6)0.073 (6)−0.001 (5)0.012 (5)0.034 (5)
C40.073 (5)0.111 (5)0.071 (6)0.003 (5)0.008 (5)0.041 (5)
C50.079 (5)0.109 (6)0.070 (5)0.002 (4)0.004 (4)0.034 (5)
C60.072 (4)0.114 (6)0.068 (5)0.005 (5)0.005 (4)0.030 (5)
C70.052 (4)0.111 (6)0.057 (5)0.001 (5)0.004 (4)0.032 (5)
C80.057 (4)0.094 (5)0.048 (5)−0.007 (4)0.002 (4)−0.023 (4)
C90.073 (4)0.097 (5)0.055 (5)0.000 (4)0.005 (4)−0.025 (4)
C100.074 (4)0.098 (5)0.060 (5)0.001 (4)0.003 (4)−0.021 (4)
C110.060 (4)0.085 (4)0.056 (5)0.001 (4)0.003 (4)−0.028 (4)
C120.052 (4)0.078 (4)0.058 (5)−0.001 (4)0.000 (4)−0.019 (4)
C130.047 (4)0.079 (4)0.049 (5)−0.002 (4)0.002 (4)−0.018 (4)
N10.0453 (18)0.082 (3)0.078 (3)−0.0047 (17)−0.0146 (19)−0.004 (2)
C140.0398 (15)0.064 (2)0.049 (3)−0.0031 (16)0.0002 (16)0.0011 (19)
C150.0409 (17)0.0531 (19)0.046 (3)0.0005 (15)0.0012 (17)0.0044 (18)
C160.052 (2)0.059 (2)0.097 (4)−0.0097 (17)−0.015 (2)0.016 (2)
C170.057 (2)0.069 (3)0.104 (5)−0.0135 (19)−0.020 (2)0.004 (3)
C180.052 (2)0.073 (3)0.082 (4)0.0064 (18)−0.016 (2)0.007 (3)
C190.049 (2)0.056 (2)0.072 (3)0.0011 (16)−0.0079 (19)0.003 (2)
O10.090 (8)0.061 (4)0.182 (13)0.012 (5)0.057 (7)0.000 (7)
O20.055 (6)0.045 (4)0.036 (8)−0.003 (3)0.001 (6)−0.004 (6)
O30.085 (9)0.075 (5)0.068 (12)−0.030 (5)0.023 (7)−0.023 (8)
N20.061 (2)0.063 (3)0.096 (4)0.0058 (19)0.029 (2)0.002 (2)
O1A0.064 (5)0.102 (8)0.29 (2)0.016 (5)0.025 (8)0.086 (11)
O2A0.049 (4)0.072 (5)0.043 (9)−0.002 (3)−0.004 (6)0.012 (7)
O3A0.051 (5)0.078 (6)0.051 (9)−0.013 (4)0.005 (5)−0.018 (6)

Geometric parameters (Å, °)

Br1—C41.849 (9)C11—C121.3900
Br2—C111.881 (9)C12—C131.3900
C1—C2i1.446 (9)C12—H12A0.9300
C1—C21.446 (9)N1—C181.316 (5)
C1—C131.543 (8)N1—C171.330 (5)
C1—C13i1.543 (9)N1—H1N0.87 (5)
C1—C14i1.564 (5)C14—C151.506 (5)
C1—C141.564 (5)C14—H14A0.9700
C2—C31.3900C14—H14B0.9700
C2—C71.3900C15—C191.386 (5)
C3—C41.3900C15—C161.395 (5)
C3—H3A0.9300C16—C171.384 (6)
C4—C51.3900C16—H16A0.9300
C5—C61.3900C17—H17A0.9300
C5—H5A0.9300C18—C191.366 (5)
C6—C71.3900C18—H18A0.9300
C6—H6A0.9300C19—H19A0.9300
C7—C81.447 (9)O1—N21.252 (11)
C8—C91.3900O2—N21.182 (19)
C8—C131.3900O3—N21.25 (2)
C9—C101.3900N2—O3A1.28 (2)
C9—H9A0.9300N2—O1A1.284 (11)
C10—C111.3900N2—O2A1.30 (2)
C10—H10A0.9300
C2i—C1—C294.1 (12)C11—C12—C13120.0
C2—C1—C13101.3 (5)C11—C12—H12A120.0
C2i—C1—C13i101.3 (6)C13—C12—H12A120.0
C13—C1—C13i108.6 (13)C12—C13—C8120.0
C2i—C1—C14i113.6 (7)C12—C13—C1127.0 (7)
C2—C1—C14i115.2 (7)C8—C13—C1112.9 (7)
C13—C1—C14i111.0 (7)C18—N1—C17122.9 (4)
C13i—C1—C14i110.4 (11)C18—N1—H1N115 (3)
C2i—C1—C14115.2 (7)C17—N1—H1N122 (3)
C2—C1—C14113.6 (7)C15—C14—C1114.1 (4)
C13—C1—C14110.4 (6)C15—C14—H14A108.7
C13i—C1—C14111.0 (11)C1—C14—H14A108.7
C14i—C1—C14105.4 (5)C15—C14—H14B108.7
C3—C2—C7120.0C1—C14—H14B108.7
C3—C2—C1130.7 (9)H14A—C14—H14B107.6
C7—C2—C1109.3 (9)C19—C15—C16117.6 (3)
C2—C3—C4120.0C19—C15—C14122.3 (3)
C2—C3—H3A120.0C16—C15—C14120.0 (3)
C4—C3—H3A120.0C17—C16—C15119.8 (4)
C3—C4—C5120.0C17—C16—H16A120.1
C3—C4—Br1115.7 (7)C15—C16—H16A120.1
C5—C4—Br1124.2 (7)N1—C17—C16119.2 (4)
C6—C5—C4120.0N1—C17—H17A120.4
C6—C5—H5A120.0C16—C17—H17A120.4
C4—C5—H5A120.0N1—C18—C19120.1 (4)
C7—C6—C5120.0N1—C18—H18A119.9
C7—C6—H6A120.0C19—C18—H18A119.9
C5—C6—H6A120.0C18—C19—C15120.3 (3)
C6—C7—C2120.0C18—C19—H19A119.8
C6—C7—C8126.5 (11)C15—C19—H19A119.8
C2—C7—C8113.5 (11)O2—N2—O3117.7 (13)
C9—C8—C13120.0O2—N2—O1121.8 (11)
C9—C8—C7137.2 (10)O3—N2—O1120.5 (11)
C13—C8—C7102.8 (10)O2—N2—O3A123.6 (14)
C10—C9—C8120.0O1—N2—O3A109.5 (9)
C10—C9—H9A120.0O2—N2—O1A107.4 (9)
C8—C9—H9A120.0O3—N2—O1A113.0 (11)
C9—C10—C11120.0O3A—N2—O1A124.4 (11)
C9—C10—H10A120.0O3—N2—O2A124.2 (15)
C11—C10—H10A120.0O1—N2—O2A110.5 (10)
C12—C11—C10120.0O3A—N2—O2A118.4 (13)
C12—C11—Br2123.4 (5)O1A—N2—O2A117.2 (11)
C10—C11—Br2116.6 (5)

Symmetry codes: (i) −x+1, −y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2ii0.87 (5)1.85 (5)2.72 (2)170 (4)
N1—H1N···O2Aii0.87 (5)1.92 (5)2.73 (2)154 (4)

Symmetry codes: (ii) −x+3/2, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2955).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Friscic, T. & MacGillivray, L. R. (2005). Chem. Commun. pp. 5748–5750. [PubMed]
  • Pedireddi, V. R. & Lekshmi, N. S. (2004). Tetrahedron Lett.45, 1903–1905.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Varughese, S. & Pedireddi, V. R. (2005). Chem. Commun. pp. 1824–1836. [PubMed]
  • Varughese, S. & Pedireddi, V. R. (2006). Chem. Eur. J.12, 1597–1600. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography