PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m231–m232.
Published online 2010 January 30. doi:  10.1107/S160053681000320X
PMCID: PMC2979847

Bis{tris­[3-(2-pyrid­yl)-1H-pyrazole]manganese(II)} dodeca­molybdo(V,VI)phosphate hexa­hydrate

Abstract

The asymmetric unit of the title compound, [Mn(C8H7N3)3]2[PMo12O40]·6H2O, consists of a complex [Mn(C8H7N3)3]2+ cation, half of a mixed-valent MoV,VI α-Keggin-type [PMo12O40]4− heteropolyanion, and three uncoordinated water mol­ecules. The Mn2+ cation is surrounded by six N atoms from three chelating 3-(2-pyrid­yl)-1H-pyrazole ligands in a distorted octa­hedral coordination. In the heteropolyanion, two O atoms of the central PO4 group (An external file that holds a picture, illustration, etc.
Object name is e-66-0m231-efi1.jpg symmetry) are equally disordered about an inversion centre. N—H(...)O and O—H(...)O hydrogen bonding between the cations, anions and the uncoordinated water mol­ecules leads to a consolidation of the structure.

Related literature

For general background to polyoxometalates, see: Pope & Müller (1991 [triangle]). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009 [triangle]); Zhang, Wei et al. (2009 [triangle]). For the structure and chemistry of reduced heteropolyanions with composition [PMo12O40]4−, see: Artero & Proust (2000 [triangle]); Kurmoo et al. (1998 [triangle]).; Niu et al. (1999 [triangle]). For the role of amines in hydro­thermal synthesis, see: Yang et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m231-scheme1.jpg

Experimental

Crystal data

  • [Mn(C8H7N3)3]2[PMo12O40]·6H2O
  • M r = 2911.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m231-efi2.jpg
  • a = 18.897 (4) Å
  • b = 16.360 (3) Å
  • c = 27.615 (6) Å
  • β = 104.90 (3)°
  • V = 8250 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.18 mm−1
  • T = 293 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.780, T max = 0.845
  • 15879 measured reflections
  • 7042 independent reflections
  • 5890 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.103
  • S = 1.00
  • 7042 reflections
  • 610 parameters
  • H-atom parameters constrained
  • Δρmax = 1.52 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681000320X/wm2301sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000320X/wm2301Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Chinese Academy of Sciences (‘Hundred Talents Program’) and the Ministry of Science and Technology of China (grant No. 2007CB607608), Shandong Provincial Education Department and Shandong Institute of Education are gratefully acknowledged.

supplementary crystallographic information

Comment

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the asymmetric unit of the title compound consists of three subunits, viz. of a complex [Mn(C8H7N3)3]2+ cation, a heteropolyanion [PMo12O40]4- and of three uncoordinated water molecules. The Mn(II) ion is distorted octahedrally coordinated by six N atoms from three chelating 3-(2-pyridyl)-1H-pyrazole ligands. The Mn—N bond lengths are in the range of 2.224 (6)—2.283 (5) Å.

The heteropolyanion [PMo12O40]4- is an one electron-reduced derivative of [PMo12O40]3-, similar to other reported representatives (Artero & Proust, 2000; Kurmoo et al., 1998; Niu et al., 1999). The employed organic ligand appears to adjust the pH value, and additionally supplies reducing electrons, which is a commonly observed feature of hydrothermal syntheses when organic amines are used to prepare various hybrid materials, zeolites or metal phosphates (Yang et al., 2003).

In the Keggin-type heteropolyanion, each Mo atom is surrounded by six O atoms and the P atom is located at the centre of the anion. There are four kinds of O atoms present in the anion according to their coordination environments: Oa (O atoms in the disordered PO4 tetrahedron), Ob (bridging O atoms between two triplet groups of MoO6 octahedra), Oc (bridging O atoms within one triplet group of MoO6 octahedra) and Od (terminal O atoms). The P—O bond distances are in the normal range of 1.495 (7)—1.562 (6) Å. The Mo—O bond distances vary widely from 1.644 (4) to 2.517 (6) Å. The shortest Mo—O bonds are in the range of 1.644 (4)—1.666 (4) Å for the terminal oxygen atoms. The longest Mo—O lengths are in the range of 2.455 (7)—2.517 (6) Å for those oxygen atoms connected with both Mo and P atoms.

N—H···O and O—H···O hydrogen bonding between the cationic and anionic moieties and the uncoordinated water molecules leads to a consolidation of the structure (Fig. 2; Table 2).

Experimental

A mixture of 3-(2-pyridyl)-1H-pyrazole (0.5 mmoL 0.07 g), sodium molybdate (0.4 mmoL, 0.10 g), manganese(II) sulfate monohydrate (0.3 mmol, 0.05 g), and dipotassium hydrogenphosphate (0.22 mmol, 0.05 g) in 10 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Pink crystals suitable for the X-ray experiment were obtained. Anal. C48H54Mn2Mo12N18O46P: C, 19.80; H, 1.82; N, 8.66. Found: C, 19.71; H, 1.74; N, 8.58 %. IR(cm-1): 3456, 1676, 1605, 1433, 1363, 1306, 1015, 959, 773, 739, 694, 942.

TGA curve shows that the lattice water molecules and the organic ligands seperate above 372 and 683 K, respectively. The overall thermal decomposition process can be described by the followed equation: 4C48H54Mn2Mo12N18O46P + 325O2 = 108H2O + 192CO2 + 36N2O5 + 8MnO + 2P2O5 + 48MoO3

Refinement

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). Hydrogen atoms attached to aromatic N atoms were refined with a N—H distance of 0.86 Å and Uiso = 1.2Ueq(N). The hydrogen atoms of the three uncoordinated water molecules could not be located unambiguously from difference Fourier maps, probably due to disorder of the water molecules. Thus the structure was refined without the H atoms of the water molecules (which includes the water O atoms O1W, O2W, O3W). In the PO4 unit, the two oxygen atoms (O19 and O21) are equally disordered about the inversion centre. In the final difference Fourier map the highest peak is 2.86 Å from atom O2w and the deepest hole is 1.09 Å from atom O9. The highest peak is located in the voids of the crystal structure and may be associated with an additional water molecule. However, refinement of this position did not result in a reasonable model. Hence this position was also excluded from the final refinement.

Figures

Fig. 1.
The building blocks of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
Fig. 2.
The crystal packing of the title compound, displayed with N—H···O and O—H···O hydrogen bonds as dashed lines. Water molecules have been omitted for clarity.

Crystal data

[Mn(C8H7N3)3]2[PMo12O40]·6H2OF(000) = 5620
Mr = 2911.22Dx = 2.344 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7042 reflections
a = 18.897 (4) Åθ = 2.9–25.0°
b = 16.360 (3) ŵ = 2.18 mm1
c = 27.615 (6) ÅT = 293 K
β = 104.90 (3)°Block, pink
V = 8250 (3) Å30.12 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer7042 independent reflections
Radiation source: fine-focus sealed tube5890 reflections with I > 2σ(I)
graphiteRint = 0.019
phi and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −19→22
Tmin = 0.780, Tmax = 0.845k = −19→18
15879 measured reflectionsl = −32→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.058P)2 + 43.0549P] where P = (Fo2 + 2Fc2)/3
7042 reflections(Δ/σ)max = 0.001
610 parametersΔρmax = 1.52 e Å3
0 restraintsΔρmin = −0.59 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.2008 (4)0.9012 (4)0.0945 (2)0.0468 (15)
H10.24350.89570.08400.056*
C20.1413 (4)0.9354 (4)0.0625 (2)0.0514 (16)
H20.14410.95470.03140.062*
C30.0778 (4)0.9412 (4)0.0766 (2)0.0520 (16)
H30.03640.96400.05510.062*
C40.0755 (3)0.9131 (4)0.1228 (2)0.0484 (15)
H40.03220.91580.13280.058*
C50.1377 (3)0.8807 (3)0.1543 (2)0.0365 (12)
C60.1409 (3)0.8535 (4)0.2053 (2)0.0404 (13)
C70.0856 (4)0.8496 (5)0.2303 (2)0.064 (2)
H70.03650.86350.21810.076*
C80.1203 (4)0.8206 (5)0.2770 (2)0.067 (2)
H80.09850.81150.30320.080*
C90.3304 (4)0.9890 (4)0.2657 (3)0.0570 (17)
H90.29960.96790.28400.068*
C100.3564 (5)1.0653 (5)0.2751 (3)0.069 (2)
H100.34281.09580.29970.083*
C110.3992 (6)1.0970 (7)0.2513 (4)0.098 (3)
H110.41731.14950.25910.118*
C120.4172 (5)1.0565 (6)0.2166 (4)0.082 (3)
H120.44731.08010.19860.098*
C130.3917 (3)0.9775 (4)0.2058 (3)0.0552 (17)
C140.4124 (3)0.9290 (5)0.1680 (3)0.0552 (17)
C150.4646 (5)0.9425 (7)0.1395 (4)0.091 (3)
H150.49560.98710.14080.109*
C160.4578 (4)0.8683 (7)0.1073 (3)0.088 (3)
H160.48370.85620.08380.105*
C170.4104 (4)0.7489 (5)0.2977 (3)0.0660 (19)
H170.41440.80310.30830.079*
C180.4495 (5)0.6912 (6)0.3289 (3)0.079 (2)
H180.47940.70570.36010.095*
C190.4441 (6)0.6112 (6)0.3136 (4)0.092 (3)
H190.47040.57090.33430.111*
C200.3994 (5)0.5909 (5)0.2674 (3)0.079 (2)
H200.39550.53720.25600.095*
C210.3607 (4)0.6534 (4)0.2384 (2)0.0487 (15)
C220.3089 (4)0.6366 (4)0.1895 (2)0.0505 (15)
C230.2897 (5)0.5646 (5)0.1635 (3)0.070 (2)
H230.30900.51280.17270.083*
C240.2363 (5)0.5851 (5)0.1211 (3)0.073 (2)
H240.21180.54980.09590.088*
Mn10.29740 (5)0.82270 (6)0.19825 (4)0.0462 (2)
Mo10.24323 (3)0.14506 (3)0.112281 (17)0.03994 (14)
Mo20.18961 (3)0.45615 (3)−0.01922 (2)0.04104 (14)
Mo30.42154 (2)0.31322 (3)−0.019107 (18)0.03646 (13)
Mo40.35196 (3)0.41058 (3)0.074082 (17)0.03616 (13)
Mo50.41597 (3)0.20430 (3)0.092200 (17)0.03748 (14)
Mo60.17852 (3)0.34986 (3)0.091187 (17)0.03910 (14)
N10.2007 (3)0.8748 (3)0.14048 (17)0.0390 (11)
N20.2040 (3)0.8284 (3)0.23478 (17)0.0415 (11)
N30.1895 (3)0.8080 (3)0.27848 (18)0.0526 (14)
H3A0.22150.78910.30410.063*
N40.3478 (3)0.9425 (3)0.2304 (2)0.0534 (13)
N50.3778 (3)0.8576 (4)0.1555 (2)0.0570 (14)
N60.4054 (4)0.8223 (4)0.1200 (3)0.0742 (18)
H60.39120.77550.10670.089*
N70.3668 (3)0.7316 (3)0.2531 (2)0.0497 (13)
N80.2709 (3)0.6996 (3)0.1642 (2)0.0524 (13)
N90.2268 (3)0.6667 (4)0.1234 (2)0.0609 (15)
H9A0.19580.69420.10110.073*
O10.4056 (3)0.3944 (3)0.02306 (16)0.0595 (12)
O20.1489 (2)0.3974 (3)0.13557 (15)0.0558 (12)
O30.2416 (3)0.0967 (3)0.16414 (14)0.0567 (12)
O40.3463 (3)0.1779 (3)0.12631 (19)0.0705 (15)
O50.4037 (3)0.3167 (3)0.10546 (17)0.0636 (13)
O60.2797 (2)0.3910 (3)0.10699 (17)0.0666 (14)
O70.4517 (3)0.2416 (3)0.03601 (16)0.0601 (12)
O80.4019 (3)0.4847 (3)0.10750 (16)0.0588 (12)
O90.4004 (3)0.2128 (3)−0.0597 (2)0.086 (2)
O100.5010 (2)0.3399 (3)−0.02956 (19)0.0588 (12)
O110.2847 (2)0.4701 (4)0.02450 (18)0.0755 (16)
O120.1037 (3)0.3971 (3)−0.0559 (2)0.0782 (17)
O130.1456 (3)0.1368 (3)0.0741 (2)0.086 (2)
O140.1576 (2)0.4261 (4)0.03989 (18)0.0736 (16)
O150.1624 (3)0.5528 (3)−0.0271 (2)0.0646 (13)
O160.2695 (3)0.0609 (4)0.0729 (2)0.0851 (19)
O170.2240 (3)0.2553 (3)0.1280 (2)0.0731 (15)
O180.4931 (2)0.1832 (3)0.13411 (16)0.0629 (13)
O19A0.2040 (4)0.2382 (4)0.0391 (2)0.0276 (14)0.50
O21A0.3249 (4)0.2805 (4)0.0255 (2)0.0273 (14)0.50
O19B0.2906 (4)0.1881 (4)0.0389 (2)0.0281 (14)0.50
O21B0.2470 (4)0.3319 (4)0.0253 (2)0.0287 (15)0.50
O1W0.1174 (4)0.7183 (5)0.0408 (3)0.107 (2)
O2W0.3674 (7)0.6650 (7)0.0673 (5)0.193 (6)
O3W0.5347 (7)0.0708 (9)0.0266 (7)0.232 (7)
P10.25000.25000.00000.0222 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.049 (4)0.047 (4)0.047 (3)−0.001 (3)0.017 (3)0.013 (3)
C20.062 (4)0.049 (4)0.040 (3)−0.014 (3)0.008 (3)0.011 (3)
C30.040 (4)0.058 (4)0.046 (3)−0.004 (3)−0.010 (3)0.009 (3)
C40.038 (3)0.061 (4)0.044 (3)−0.002 (3)0.007 (3)0.003 (3)
C50.033 (3)0.038 (3)0.035 (3)−0.002 (2)0.002 (2)0.000 (2)
C60.035 (3)0.046 (3)0.039 (3)0.000 (3)0.009 (3)0.003 (3)
C70.043 (4)0.101 (6)0.051 (4)0.013 (4)0.019 (3)0.018 (4)
C80.067 (5)0.096 (6)0.041 (3)−0.001 (4)0.022 (3)0.014 (4)
C90.063 (4)0.054 (4)0.059 (4)0.003 (4)0.025 (4)0.014 (3)
C100.080 (6)0.063 (5)0.055 (4)0.001 (4)0.001 (4)0.005 (4)
C110.092 (6)0.096 (6)0.095 (6)−0.001 (5)0.001 (5)0.004 (6)
C120.063 (5)0.075 (6)0.088 (6)−0.017 (5)−0.016 (5)0.024 (5)
C130.031 (3)0.058 (4)0.064 (4)−0.005 (3)−0.012 (3)0.023 (3)
C140.033 (3)0.070 (5)0.059 (4)−0.001 (3)0.004 (3)0.025 (4)
C150.055 (4)0.115 (6)0.095 (5)−0.009 (5)0.006 (4)0.040 (5)
C160.048 (4)0.159 (10)0.063 (5)0.046 (5)0.026 (4)0.033 (6)
C170.068 (5)0.059 (5)0.062 (4)0.004 (4)0.000 (4)0.001 (4)
C180.075 (6)0.079 (6)0.071 (5)0.001 (5)−0.004 (4)0.011 (5)
C190.097 (6)0.075 (5)0.086 (5)0.013 (5)−0.011 (5)0.027 (5)
C200.085 (6)0.050 (4)0.090 (6)0.014 (4)0.000 (5)0.007 (4)
C210.046 (4)0.046 (4)0.055 (4)0.009 (3)0.015 (3)0.008 (3)
C220.050 (4)0.046 (4)0.059 (4)0.007 (3)0.021 (3)0.002 (3)
C230.094 (6)0.051 (4)0.068 (5)0.015 (4)0.028 (5)−0.003 (4)
C240.097 (6)0.060 (5)0.063 (5)0.003 (5)0.022 (5)−0.018 (4)
Mn10.0361 (5)0.0403 (5)0.0618 (6)0.0050 (4)0.0118 (4)0.0090 (4)
Mo10.0514 (3)0.0399 (3)0.0269 (2)−0.0058 (2)0.0069 (2)0.0034 (2)
Mo20.0427 (3)0.0312 (3)0.0513 (3)0.0064 (2)0.0160 (2)0.0036 (2)
Mo30.0249 (3)0.0423 (3)0.0419 (3)−0.0054 (2)0.0080 (2)−0.0026 (2)
Mo40.0297 (3)0.0395 (3)0.0371 (2)−0.0073 (2)0.0047 (2)−0.0095 (2)
Mo50.0265 (3)0.0484 (3)0.0336 (2)0.0016 (2)0.0004 (2)0.0013 (2)
Mo60.0401 (3)0.0467 (3)0.0304 (2)0.0085 (2)0.0088 (2)−0.0092 (2)
N10.037 (3)0.038 (3)0.042 (2)0.001 (2)0.010 (2)0.008 (2)
N20.038 (3)0.047 (3)0.037 (2)−0.001 (2)0.006 (2)0.006 (2)
N30.054 (3)0.063 (4)0.036 (2)−0.003 (3)0.003 (2)0.014 (2)
N40.044 (3)0.046 (3)0.068 (3)−0.002 (3)0.010 (3)0.010 (3)
N50.042 (3)0.067 (4)0.067 (3)0.010 (3)0.021 (3)0.013 (3)
N60.057 (4)0.082 (5)0.082 (4)0.020 (4)0.014 (4)0.006 (4)
N70.045 (3)0.045 (3)0.058 (3)0.006 (2)0.011 (3)0.003 (3)
N80.048 (3)0.051 (3)0.056 (3)0.005 (3)0.008 (3)−0.001 (3)
N90.062 (4)0.062 (4)0.053 (3)0.005 (3)0.004 (3)−0.003 (3)
O10.092 (3)0.048 (2)0.050 (2)0.022 (2)0.038 (2)0.010 (2)
O20.048 (3)0.076 (3)0.047 (2)0.002 (2)0.017 (2)−0.024 (2)
O30.060 (3)0.073 (3)0.034 (2)−0.014 (2)0.006 (2)0.016 (2)
O40.064 (3)0.079 (3)0.083 (3)−0.037 (3)0.046 (3)−0.041 (3)
O50.097 (4)0.052 (3)0.056 (3)0.024 (3)0.045 (3)0.012 (2)
O60.036 (2)0.105 (4)0.059 (3)0.001 (2)0.012 (2)0.033 (3)
O70.093 (3)0.050 (3)0.049 (2)0.022 (2)0.039 (2)0.008 (2)
O80.075 (3)0.049 (3)0.051 (2)−0.021 (2)0.013 (2)−0.016 (2)
O90.087 (4)0.040 (3)0.089 (4)0.011 (3)−0.053 (3)−0.015 (3)
O100.044 (3)0.061 (3)0.080 (3)−0.005 (2)0.033 (2)0.002 (3)
O110.041 (3)0.124 (4)0.063 (3)0.008 (3)0.016 (2)0.045 (3)
O120.076 (3)0.083 (4)0.093 (4)−0.044 (3)0.054 (3)−0.048 (3)
O130.082 (4)0.042 (3)0.092 (4)0.014 (3)−0.053 (3)−0.020 (3)
O140.031 (2)0.126 (4)0.061 (3)0.000 (3)0.007 (2)0.041 (3)
O150.053 (3)0.042 (3)0.094 (4)0.010 (2)0.010 (3)0.012 (2)
O160.073 (3)0.096 (4)0.107 (4)−0.053 (3)0.059 (3)−0.066 (4)
O170.065 (3)0.043 (3)0.079 (3)0.003 (2)−0.038 (3)−0.013 (2)
O180.044 (3)0.089 (4)0.043 (2)0.023 (3)−0.010 (2)−0.001 (2)
O19A0.029 (4)0.030 (4)0.023 (3)−0.002 (3)0.005 (3)−0.004 (3)
O21A0.024 (3)0.029 (4)0.029 (3)−0.002 (3)0.007 (3)−0.001 (3)
O19B0.029 (4)0.030 (4)0.023 (3)0.002 (3)0.002 (3)0.001 (3)
O21B0.027 (4)0.028 (4)0.031 (3)−0.001 (3)0.007 (3)−0.002 (3)
O1W0.086 (5)0.107 (5)0.108 (5)0.011 (4)−0.012 (4)−0.006 (4)
O2W0.207 (11)0.137 (8)0.301 (15)−0.038 (8)0.187 (12)−0.053 (9)
O3W0.169 (11)0.183 (13)0.41 (2)0.001 (9)0.190 (14)−0.068 (13)
P10.0213 (9)0.0235 (9)0.0209 (7)−0.0005 (7)0.0036 (7)−0.0016 (7)

Geometric parameters (Å, °)

C1—N11.342 (7)Mo1—O19B2.517 (6)
C1—C21.358 (9)Mo2—O151.660 (4)
C1—H10.9300Mo2—O16i1.860 (5)
C2—C31.356 (9)Mo2—O111.903 (5)
C2—H20.9300Mo2—O121.936 (5)
C3—C41.366 (9)Mo2—O141.944 (4)
C3—H30.9300Mo2—O19Bi2.471 (7)
C4—C51.376 (8)Mo2—O21B2.478 (7)
C4—H40.9300Mo3—O101.658 (4)
C5—N11.344 (7)Mo3—O11.841 (4)
C5—C61.463 (7)Mo3—O71.889 (4)
C6—N21.324 (7)Mo3—O13i1.895 (5)
C6—C71.394 (8)Mo3—O91.971 (5)
C7—C81.375 (9)Mo3—O19Ai2.443 (7)
C7—H70.9300Mo3—O21A2.510 (6)
C8—N31.315 (9)Mo4—O81.662 (4)
C8—H80.9300Mo4—O61.852 (4)
C9—N41.341 (9)Mo4—O111.882 (5)
C9—C101.341 (10)Mo4—O51.906 (5)
C9—H90.9300Mo4—O11.954 (4)
C10—C111.278 (13)Mo4—O21B2.455 (7)
C10—H100.9300Mo4—O21A2.498 (7)
C11—C121.281 (13)Mo5—O181.647 (4)
C11—H110.9300Mo5—O41.857 (4)
C12—C131.384 (11)Mo5—O51.900 (5)
C12—H120.9300Mo5—O12i1.924 (5)
C13—N41.330 (8)Mo5—O71.943 (4)
C13—C141.445 (10)Mo5—O19B2.461 (7)
C14—N51.339 (9)Mo5—O21A2.506 (7)
C14—C151.428 (11)Mo6—O21.666 (4)
C15—C161.490 (14)Mo6—O9i1.834 (5)
C15—H150.9300Mo6—O141.852 (5)
C16—N61.360 (11)Mo6—O171.928 (5)
C16—H160.9300Mo6—O61.967 (5)
C17—N71.325 (9)Mo6—O19A2.449 (6)
C17—C181.361 (11)Mo6—O21B2.506 (6)
C17—H170.9300N2—N31.346 (7)
C18—C191.370 (12)N3—H3A0.8600
C18—H180.9300N5—N61.354 (8)
C19—C201.377 (12)N6—H60.8600
C19—H190.9300N8—N91.331 (8)
C20—C211.386 (10)N9—H9A0.8600
C20—H200.9300O9—Mo6i1.834 (5)
C21—N71.337 (8)O12—Mo5i1.924 (5)
C21—C221.477 (10)O13—Mo3i1.895 (5)
C22—N81.345 (8)O16—Mo2i1.860 (5)
C22—C231.380 (10)O19A—P11.562 (6)
C23—C241.376 (11)O19A—O21Ai1.752 (9)
C23—H230.9300O19A—Mo3i2.443 (7)
C24—N91.352 (9)O21A—P11.495 (7)
C24—H240.9300O21A—O21B1.693 (9)
Mn1—N82.224 (6)O21A—O19B1.723 (9)
Mn1—N52.224 (5)O21A—O19Ai1.752 (9)
Mn1—N22.250 (5)O19B—P11.531 (6)
Mn1—N42.259 (6)O19B—O21Bi1.764 (9)
Mn1—N12.260 (5)O19B—Mo2i2.471 (7)
Mn1—N72.283 (5)O21B—P11.519 (7)
Mo1—O31.644 (4)O21B—O19Bi1.764 (9)
Mo1—O131.880 (5)P1—O21Ai1.495 (7)
Mo1—O161.899 (5)P1—O21Bi1.519 (7)
Mo1—O171.911 (5)P1—O19Bi1.531 (6)
Mo1—O41.960 (5)P1—O19Ai1.562 (6)
Mo1—O19A2.488 (6)
N1—C1—C2123.0 (6)O18—Mo5—O4102.1 (3)
N1—C1—H1118.5O18—Mo5—O5101.3 (2)
C2—C1—H1118.5O4—Mo5—O589.4 (2)
C3—C2—C1119.2 (6)O18—Mo5—O12i101.7 (3)
C3—C2—H2120.4O4—Mo5—O12i89.8 (2)
C1—C2—H2120.4O5—Mo5—O12i156.6 (3)
C2—C3—C4119.1 (6)O18—Mo5—O7101.6 (2)
C2—C3—H3120.5O4—Mo5—O7156.3 (2)
C4—C3—H3120.5O5—Mo5—O786.25 (18)
C3—C4—C5119.5 (6)O12i—Mo5—O785.1 (2)
C3—C4—H4120.2O18—Mo5—O19B159.9 (2)
C5—C4—H4120.2O4—Mo5—O19B65.1 (2)
N1—C5—C4121.6 (5)O5—Mo5—O19B94.2 (2)
N1—C5—C6115.5 (5)O12i—Mo5—O19B64.4 (2)
C4—C5—C6122.9 (5)O7—Mo5—O19B92.0 (2)
N2—C6—C7110.6 (5)O18—Mo5—O21A159.5 (2)
N2—C6—C5119.7 (5)O4—Mo5—O21A92.6 (2)
C7—C6—C5129.8 (6)O5—Mo5—O21A64.3 (2)
C8—C7—C6104.1 (6)O12i—Mo5—O21A92.4 (3)
C8—C7—H7127.9O7—Mo5—O21A64.6 (2)
C6—C7—H7127.9O19B—Mo5—O21A40.6 (2)
N3—C8—C7108.2 (6)O2—Mo6—O9i102.9 (3)
N3—C8—H8125.9O2—Mo6—O14101.7 (3)
C7—C8—H8125.9O9i—Mo6—O1491.5 (2)
N4—C9—C10121.5 (7)O2—Mo6—O17100.2 (2)
N4—C9—H9119.2O9i—Mo6—O1790.0 (2)
C10—C9—H9119.2O14—Mo6—O17157.2 (2)
C11—C10—C9121.8 (9)O2—Mo6—O699.7 (2)
C11—C10—H10119.1O9i—Mo6—O6157.2 (3)
C9—C10—H10119.1O14—Mo6—O686.7 (2)
C10—C11—C12120.1 (11)O17—Mo6—O683.2 (2)
C10—C11—H11120.0O2—Mo6—O19A159.3 (2)
C12—C11—H11120.0O9i—Mo6—O19A64.1 (3)
C11—C12—C13119.9 (10)O14—Mo6—O19A95.1 (2)
C11—C12—H12120.1O17—Mo6—O19A65.3 (2)
C13—C12—H12120.1O6—Mo6—O19A93.4 (2)
N4—C13—C12121.4 (8)O2—Mo6—O21B157.4 (2)
N4—C13—C14117.0 (6)O9i—Mo6—O21B95.7 (3)
C12—C13—C14121.6 (7)O14—Mo6—O21B64.7 (2)
N5—C14—C15110.8 (8)O17—Mo6—O21B92.5 (2)
N5—C14—C13117.4 (6)O6—Mo6—O21B63.1 (2)
C15—C14—C13131.8 (8)O19A—Mo6—O21B43.1 (2)
C14—C15—C16103.7 (8)C1—N1—C5117.5 (5)
C14—C15—H15128.2C1—N1—Mn1126.3 (4)
C16—C15—H15128.2C5—N1—Mn1116.2 (3)
N6—C16—C15104.8 (7)C6—N2—N3105.7 (5)
N6—C16—H16127.6C6—N2—Mn1115.0 (4)
C15—C16—H16127.6N3—N2—Mn1139.1 (4)
N7—C17—C18123.2 (7)C8—N3—N2111.3 (5)
N7—C17—H17118.4C8—N3—H3A124.3
C18—C17—H17118.4N2—N3—H3A124.3
C17—C18—C19118.8 (8)C13—N4—C9115.3 (6)
C17—C18—H18120.6C13—N4—Mn1115.3 (5)
C19—C18—H18120.6C9—N4—Mn1128.4 (4)
C18—C19—C20119.7 (8)C14—N5—N6107.7 (6)
C18—C19—H19120.1C14—N5—Mn1116.3 (5)
C20—C19—H19120.1N6—N5—Mn1135.9 (5)
C19—C20—C21117.6 (8)N5—N6—C16113.1 (7)
C19—C20—H20121.2N5—N6—H6123.5
C21—C20—H20121.2C16—N6—H6123.5
N7—C21—C20122.6 (7)C17—N7—C21118.1 (6)
N7—C21—C22116.1 (6)C17—N7—Mn1126.2 (5)
C20—C21—C22121.2 (6)C21—N7—Mn1115.7 (4)
N8—C22—C23110.6 (6)N9—N8—C22105.3 (5)
N8—C22—C21118.2 (6)N9—N8—Mn1138.4 (4)
C23—C22—C21131.3 (6)C22—N8—Mn1116.3 (4)
C24—C23—C22105.8 (7)N8—N9—C24112.2 (6)
C24—C23—H23127.1N8—N9—H9A123.9
C22—C23—H23127.1C24—N9—H9A123.9
N9—C24—C23106.1 (7)Mo3—O1—Mo4138.9 (3)
N9—C24—H24126.9Mo5—O4—Mo1139.6 (3)
C23—C24—H24126.9Mo5—O5—Mo4140.0 (3)
N8—Mn1—N596.8 (2)Mo4—O6—Mo6138.4 (3)
N8—Mn1—N296.26 (19)Mo3—O7—Mo5138.0 (3)
N5—Mn1—N2161.7 (2)Mo6i—O9—Mo3139.2 (4)
N8—Mn1—N4168.0 (2)Mo4—O11—Mo2138.7 (3)
N5—Mn1—N473.1 (2)Mo5i—O12—Mo2136.6 (3)
N2—Mn1—N495.04 (19)Mo1—O13—Mo3i140.9 (4)
N8—Mn1—N189.41 (19)Mo6—O14—Mo2139.6 (3)
N5—Mn1—N193.85 (18)Mo2i—O16—Mo1142.1 (3)
N2—Mn1—N173.49 (17)Mo1—O17—Mo6136.3 (3)
N4—Mn1—N197.64 (19)P1—O19A—O21Ai53.2 (3)
N8—Mn1—N773.6 (2)P1—O19A—Mo3i124.6 (3)
N5—Mn1—N799.5 (2)O21Ai—O19A—Mo3i71.3 (3)
N2—Mn1—N796.45 (18)P1—O19A—Mo6122.9 (4)
N4—Mn1—N7101.2 (2)O21Ai—O19A—Mo6132.2 (4)
N1—Mn1—N7159.42 (19)Mo3i—O19A—Mo693.6 (2)
O3—Mo1—O13102.6 (3)P1—O19A—Mo1122.3 (4)
O3—Mo1—O16102.5 (3)O21Ai—O19A—Mo1132.0 (4)
O13—Mo1—O1689.5 (2)Mo3i—O19A—Mo192.4 (2)
O3—Mo1—O17102.1 (2)Mo6—O19A—Mo192.4 (2)
O13—Mo1—O1788.8 (2)P1—O21A—O21B56.5 (3)
O16—Mo1—O17155.1 (3)P1—O21A—O19B56.3 (3)
O3—Mo1—O4101.5 (2)O21B—O21A—O19B93.5 (4)
O13—Mo1—O4155.9 (3)P1—O21A—O19Ai56.9 (3)
O16—Mo1—O485.4 (2)O21B—O21A—O19Ai92.4 (4)
O17—Mo1—O486.2 (2)O19B—O21A—O19Ai91.7 (4)
O3—Mo1—O19A159.2 (2)P1—O21A—Mo4125.2 (4)
O13—Mo1—O19A62.9 (2)O21B—O21A—Mo468.7 (3)
O16—Mo1—O19A92.6 (3)O19B—O21A—Mo4132.0 (4)
O17—Mo1—O19A64.6 (2)O19Ai—O21A—Mo4131.5 (4)
O4—Mo1—O19A93.8 (2)P1—O21A—Mo5124.6 (4)
O3—Mo1—O19B157.9 (2)O21B—O21A—Mo5132.9 (4)
O13—Mo1—O19B94.0 (3)O19B—O21A—Mo568.3 (3)
O16—Mo1—O19B62.7 (2)O19Ai—O21A—Mo5129.5 (4)
O17—Mo1—O19B92.6 (2)Mo4—O21A—Mo591.2 (2)
O4—Mo1—O19B62.7 (2)P1—O21A—Mo3124.1 (3)
O19A—Mo1—O19B42.9 (2)O21B—O21A—Mo3129.4 (4)
O15—Mo2—O16i102.5 (3)O19B—O21A—Mo3130.9 (4)
O15—Mo2—O11100.3 (3)O19Ai—O21A—Mo367.3 (3)
O16i—Mo2—O1190.3 (2)Mo4—O21A—Mo390.4 (2)
O15—Mo2—O12102.5 (3)Mo5—O21A—Mo391.0 (2)
O16i—Mo2—O1288.4 (2)P1—O19B—O21A54.3 (3)
O11—Mo2—O12156.8 (3)P1—O19B—O21Bi54.3 (3)
O15—Mo2—O14101.4 (3)O21A—O19B—O21Bi91.3 (4)
O16i—Mo2—O14156.0 (3)P1—O19B—Mo5125.4 (4)
O11—Mo2—O1486.80 (19)O21A—O19B—Mo571.1 (3)
O12—Mo2—O1485.0 (2)O21Bi—O19B—Mo5134.3 (4)
O15—Mo2—O19Bi160.1 (2)P1—O19B—Mo2i123.7 (3)
O16i—Mo2—O19Bi64.2 (2)O21A—O19B—Mo2i134.8 (4)
O11—Mo2—O19Bi94.7 (2)O21Bi—O19B—Mo2i69.3 (3)
O12—Mo2—O19Bi64.1 (2)Mo5—O19B—Mo2i93.3 (2)
O14—Mo2—O19Bi92.3 (2)P1—O19B—Mo1122.2 (3)
O15—Mo2—O21B158.2 (2)O21A—O19B—Mo1130.5 (4)
O16i—Mo2—O21B93.1 (3)O21Bi—O19B—Mo1128.6 (4)
O11—Mo2—O21B64.0 (2)Mo5—O19B—Mo192.0 (2)
O12—Mo2—O21B93.0 (2)Mo2i—O19B—Mo190.9 (2)
O14—Mo2—O21B64.3 (2)P1—O21B—O21A55.1 (3)
O19Bi—Mo2—O21B41.8 (2)P1—O21B—O19Bi55.0 (3)
O10—Mo3—O1102.9 (2)O21A—O21B—O19Bi92.0 (4)
O10—Mo3—O7101.8 (2)P1—O21B—Mo4126.5 (4)
O1—Mo3—O790.13 (18)O21A—O21B—Mo471.4 (3)
O10—Mo3—O13i101.3 (3)O19Bi—O21B—Mo4135.1 (4)
O1—Mo3—O13i90.7 (2)P1—O21B—Mo2123.9 (4)
O7—Mo3—O13i156.1 (3)O21A—O21B—Mo2132.7 (4)
O10—Mo3—O9100.4 (3)O19Bi—O21B—Mo268.9 (3)
O1—Mo3—O9156.7 (3)Mo4—O21B—Mo291.7 (2)
O7—Mo3—O985.2 (2)P1—O21B—Mo6121.7 (3)
O13i—Mo3—O984.7 (2)O21A—O21B—Mo6131.9 (4)
O10—Mo3—O19Ai157.1 (2)O19Bi—O21B—Mo6127.0 (4)
O1—Mo3—O19Ai94.8 (2)Mo4—O21B—Mo692.0 (2)
O7—Mo3—O19Ai92.4 (2)Mo2—O21B—Mo691.3 (2)
O13i—Mo3—O19Ai63.7 (2)O21A—P1—O21Ai180.0 (8)
O9—Mo3—O19Ai62.7 (2)O21A—P1—O21B68.4 (4)
O10—Mo3—O21A161.3 (2)O21Ai—P1—O21B111.6 (4)
O1—Mo3—O21A65.5 (2)O21A—P1—O21Bi111.6 (4)
O7—Mo3—O21A65.1 (2)O21Ai—P1—O21Bi68.4 (4)
O13i—Mo3—O21A93.7 (3)O21B—P1—O21Bi180.0 (5)
O9—Mo3—O21A92.0 (3)O21A—P1—O19Bi110.6 (4)
O19Ai—Mo3—O21A41.4 (2)O21Ai—P1—O19Bi69.4 (4)
O8—Mo4—O6103.8 (2)O21B—P1—O19Bi70.6 (3)
O8—Mo4—O11102.0 (3)O21Bi—P1—O19Bi109.4 (3)
O6—Mo4—O1190.04 (19)O21A—P1—O19B69.4 (4)
O8—Mo4—O5100.6 (2)O21Ai—P1—O19B110.6 (4)
O6—Mo4—O589.7 (2)O21B—P1—O19B109.4 (3)
O11—Mo4—O5156.8 (3)O21Bi—P1—O19B70.6 (3)
O8—Mo4—O1100.0 (2)O19Bi—P1—O19B180.0 (8)
O6—Mo4—O1156.2 (2)O21A—P1—O19Ai69.9 (3)
O11—Mo4—O185.7 (2)O21Ai—P1—O19Ai110.1 (3)
O5—Mo4—O185.27 (18)O21B—P1—O19Ai107.6 (3)
O8—Mo4—O21B161.8 (2)O21Bi—P1—O19Ai72.4 (3)
O6—Mo4—O21B65.5 (2)O19Bi—P1—O19Ai72.6 (3)
O11—Mo4—O21B64.7 (2)O19B—P1—O19Ai107.4 (3)
O5—Mo4—O21B94.2 (2)O21A—P1—O19A110.1 (3)
O1—Mo4—O21B91.7 (2)O21Ai—P1—O19A69.9 (3)
O8—Mo4—O21A158.2 (2)O21B—P1—O19A72.4 (3)
O6—Mo4—O21A92.4 (2)O21Bi—P1—O19A107.6 (3)
O11—Mo4—O21A92.5 (3)O19Bi—P1—O19A107.4 (3)
O5—Mo4—O21A64.4 (2)O19B—P1—O19A72.6 (3)
O1—Mo4—O21A64.5 (2)O19Ai—P1—O19A180.0 (4)
O21B—Mo4—O21A40.0 (2)

Symmetry codes: (i) −x+1/2, −y+1/2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N9—H9A···O1W0.861.962.786 (9)160
N6—H6···O2W0.862.102.951 (13)171
N3—H3A···O17ii0.861.972.814 (7)165

Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2301).

References

  • Artero, V. & Proust, A. (2000). Eur. J. Inorg. Chem. pp. 2393–2400
  • Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kurmoo, M., Bonamico, M., Bellitto, C., Fares, V., Federici, F., Guionneau, P., Ducasse, L., Kitagawa, H. & Day, P. (1998). Adv. Mater.7, 545–550.
  • Niu, J. Y., Shan, B. Z. & You, X. Z. (1999). Transition Met. Chem.24, 108–114.
  • Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed.30, 34–38.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, W. B., Lu, C. Z., Wu, C. D. & Zhuang, H. H. (2003). Chin. J. Struct. Chem.22, 137–142.
  • Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.
  • Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des.9, 4424–4428.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography