PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o435.
Published online 2010 January 23. doi:  10.1107/S1600536810002278
PMCID: PMC2979842

N-(4-Methyl­phen­yl)benzene­sulfonamide

Abstract

The asymmetric unit of the title compound, C13H13NO2S, contains two independent mol­ecules. The dihedral angles between the aromatic rings in the two mol­ecules are 78.0 (1) and 74.0 (1)°. In the crystal, inter­molecular N—H(...)O hydrogen bonds pack the mol­ecules into a three-dimensional structure.

Related literature

For the preparation of the title compound, see: Gowda et al. (2005 [triangle]). For related structures, see: Gelbrich et al. (2007 [triangle]); Gowda et al. (2008 [triangle], 2010 [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o435-scheme1.jpg

Experimental

Crystal data

  • C13H13NO2S
  • M r = 247.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o435-efi1.jpg
  • a = 10.8963 (7) Å
  • b = 9.6981 (7) Å
  • c = 24.089 (2) Å
  • β = 101.335 (6)°
  • V = 2495.9 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 299 K
  • 0.48 × 0.36 × 0.36 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.890, T max = 0.916
  • 11057 measured reflections
  • 5102 independent reflections
  • 3835 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.115
  • S = 1.07
  • 5102 reflections
  • 317 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002278/bt5173sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002278/bt5173Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As a part of studying the effect of substituents on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2008; 2010), the crystal structure of N-(4-methylphenyl)benzenesulfonamide has been determined. The asymmetric unit contains two independent molecules (Fig. 1).

The conformations of the N—C bonds in the C—SO2—NH—C segments of both molecules have gauche torsions with respect to the S═O bonds. The molecules are bent at the S atoms with the C1—SO2—NH—C7 and C14—SO2—NH—C20 torsion angles of 59.5 (2)° and -55.2 (2)°, respectively, in the 2 molecules.

The two aromatic rings are tilted relative to each other by 78.0 (1)° in molecule 1 and 74.0 (1)° in molecule 2, compared to the values of 61.5 (1)° in N-(2-methylphenyl)benzenesulfonamide (II) (Gowda et al., 2008) and 67.9 (1)° (molecule 1) and 68.6 (1)° (molecule 2) in N-(3-methylphenyl)benzenesulfonamide (III) (Gowda et al., 2010)

The other bond parameters are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing stabilized by intermolecular N—H···O hydrogen bonds (Table 1) is shown in Fig.2.

Experimental

The solution of benzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with p-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(4-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005).

The single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement

The H atoms of the NH groups were located in a difference map and refined with the N—H distance restrained to 0.86 (1) Å. H atoms bonded to C were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å and with their isotropic displacement parameters set to 1.2 times of the Ueq of the parent C atom.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C13H13NO2SF(000) = 1040
Mr = 247.30Dx = 1.316 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3814 reflections
a = 10.8963 (7) Åθ = 2.6–27.8°
b = 9.6981 (7) ŵ = 0.25 mm1
c = 24.089 (2) ÅT = 299 K
β = 101.335 (6)°Prism, colourless
V = 2495.9 (3) Å30.48 × 0.36 × 0.36 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector5102 independent reflections
Radiation source: fine-focus sealed tube3835 reflections with I > 2σ(I)
graphiteRint = 0.016
Rotation method data acquisition using ω and [var phi] scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −13→6
Tmin = 0.890, Tmax = 0.916k = −8→12
11057 measured reflectionsl = −30→29

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0678P)2 + 0.1533P] where P = (Fo2 + 2Fc2)/3
5102 reflections(Δ/σ)max = 0.022
317 parametersΔρmax = 0.25 e Å3
2 restraintsΔρmin = −0.44 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.49646 (15)0.23424 (19)0.34166 (7)0.0352 (4)
C20.54145 (19)0.1458 (2)0.38595 (8)0.0540 (5)
H20.57060.05850.37920.065*
C30.5422 (2)0.1902 (3)0.44079 (9)0.0743 (7)
H30.57140.13170.47110.089*
C40.5009 (2)0.3177 (3)0.45059 (10)0.0729 (7)
H40.50170.34550.48760.087*
C50.4576 (2)0.4073 (3)0.40631 (10)0.0637 (6)
H50.43040.49520.41350.076*
C60.45504 (17)0.3650 (2)0.35136 (8)0.0473 (5)
H60.42570.42390.32120.057*
C70.72265 (15)0.26027 (18)0.26558 (7)0.0345 (4)
C80.78605 (17)0.38435 (19)0.27057 (8)0.0437 (4)
H80.74240.46640.26180.052*
C90.91509 (18)0.3864 (2)0.28866 (9)0.0519 (5)
H90.95690.47050.29160.062*
C100.98274 (17)0.2673 (2)0.30237 (8)0.0483 (5)
C110.91807 (17)0.1439 (2)0.29706 (8)0.0492 (5)
H110.96210.06210.30610.059*
C120.78924 (17)0.1386 (2)0.27865 (8)0.0445 (4)
H120.74780.05430.27510.053*
C131.1240 (2)0.2704 (3)0.32199 (12)0.0782 (8)
H13A1.15430.36200.31780.094*
H13B1.16190.20760.29950.094*
H13C1.14520.24350.36110.094*
N10.59074 (13)0.26099 (17)0.24393 (6)0.0380 (4)
H1N0.5641 (19)0.3419 (13)0.2338 (9)0.061 (7)*
O10.36880 (11)0.21729 (15)0.23898 (5)0.0483 (3)
O20.52235 (12)0.03473 (13)0.27441 (6)0.0484 (3)
S10.48854 (4)0.17773 (5)0.271806 (17)0.03439 (13)
C140.24474 (16)0.1155 (2)0.04914 (8)0.0433 (4)
C150.23588 (19)0.0133 (2)0.08819 (10)0.0539 (5)
H150.26610.02920.12650.065*
C160.1824 (2)−0.1121 (3)0.07043 (13)0.0746 (7)
H160.1760−0.18120.09650.089*
C170.1387 (3)−0.1331 (3)0.01356 (16)0.0934 (10)
H170.1026−0.21750.00130.112*
C180.1469 (3)−0.0333 (4)−0.02519 (13)0.0927 (10)
H180.1169−0.0504−0.06340.111*
C190.1998 (2)0.0942 (3)−0.00817 (9)0.0691 (7)
H190.20500.1631−0.03450.083*
C200.12459 (15)0.34730 (18)0.11770 (7)0.0355 (4)
C210.05945 (18)0.2725 (2)0.15145 (8)0.0440 (4)
H210.10150.20870.17720.053*
C22−0.06751 (19)0.2922 (2)0.14710 (9)0.0521 (5)
H22−0.10960.24210.17040.063*
C23−0.13356 (18)0.3848 (3)0.10883 (8)0.0544 (6)
C24−0.06742 (18)0.4595 (2)0.07557 (8)0.0558 (6)
H24−0.10990.52260.04970.067*
C250.06092 (18)0.4430 (2)0.07982 (7)0.0469 (5)
H250.10370.49550.05750.056*
C26−0.2728 (2)0.4058 (4)0.10399 (11)0.0918 (10)
H26A−0.28920.43680.13970.110*
H26B−0.31570.32030.09380.110*
H26C−0.30190.47380.07550.110*
N20.25663 (14)0.32896 (17)0.12379 (6)0.0404 (4)
H2N0.2978 (16)0.2947 (19)0.1543 (6)0.047 (6)*
O30.44699 (12)0.24737 (16)0.09618 (7)0.0607 (4)
O40.28964 (14)0.36865 (16)0.02590 (6)0.0614 (4)
S20.31882 (4)0.27343 (5)0.07160 (2)0.04299 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0322 (9)0.0384 (10)0.0348 (9)−0.0071 (7)0.0058 (7)0.0000 (7)
C20.0650 (13)0.0520 (13)0.0431 (11)−0.0009 (10)0.0057 (9)0.0080 (9)
C30.0945 (19)0.087 (2)0.0382 (12)−0.0135 (15)0.0046 (12)0.0091 (12)
C40.0800 (17)0.099 (2)0.0450 (12)−0.0294 (15)0.0256 (12)−0.0179 (14)
C50.0673 (14)0.0626 (15)0.0674 (15)−0.0120 (11)0.0287 (12)−0.0233 (13)
C60.0494 (11)0.0438 (12)0.0506 (11)−0.0020 (9)0.0143 (9)−0.0026 (9)
C70.0341 (9)0.0401 (10)0.0308 (8)0.0032 (7)0.0098 (7)0.0025 (7)
C80.0412 (10)0.0343 (10)0.0576 (11)0.0038 (8)0.0142 (8)−0.0011 (9)
C90.0435 (11)0.0485 (13)0.0661 (13)−0.0092 (9)0.0169 (9)−0.0090 (10)
C100.0345 (10)0.0672 (14)0.0444 (11)0.0020 (9)0.0107 (8)0.0004 (10)
C110.0393 (10)0.0540 (13)0.0551 (12)0.0137 (9)0.0116 (9)0.0133 (10)
C120.0402 (10)0.0388 (10)0.0551 (11)0.0037 (8)0.0110 (8)0.0081 (9)
C130.0382 (12)0.110 (2)0.0846 (18)−0.0009 (13)0.0089 (11)−0.0004 (16)
N10.0324 (8)0.0403 (9)0.0407 (8)0.0033 (7)0.0060 (6)0.0086 (7)
O10.0315 (7)0.0660 (9)0.0430 (7)−0.0024 (6)−0.0033 (5)0.0012 (6)
O20.0528 (8)0.0319 (7)0.0592 (8)−0.0058 (6)0.0080 (6)−0.0083 (6)
S10.0319 (2)0.0350 (3)0.0343 (2)−0.00365 (18)0.00181 (16)−0.00231 (18)
C140.0343 (9)0.0523 (12)0.0441 (10)0.0007 (8)0.0102 (8)−0.0094 (9)
C150.0524 (12)0.0514 (13)0.0601 (13)−0.0001 (10)0.0164 (10)−0.0089 (10)
C160.0732 (16)0.0505 (15)0.105 (2)−0.0068 (12)0.0305 (15)−0.0141 (14)
C170.084 (2)0.076 (2)0.126 (3)−0.0238 (16)0.0340 (19)−0.051 (2)
C180.090 (2)0.109 (3)0.0741 (18)−0.0173 (18)0.0047 (15)−0.0492 (18)
C190.0675 (15)0.0919 (19)0.0462 (12)−0.0078 (13)0.0070 (11)−0.0188 (12)
C200.0378 (9)0.0373 (10)0.0299 (8)0.0011 (7)0.0030 (7)−0.0072 (7)
C210.0495 (11)0.0420 (11)0.0397 (10)−0.0007 (9)0.0070 (8)0.0009 (8)
C220.0523 (12)0.0597 (14)0.0473 (11)−0.0102 (10)0.0170 (9)−0.0080 (10)
C230.0390 (10)0.0812 (16)0.0406 (10)0.0004 (10)0.0017 (8)−0.0185 (10)
C240.0503 (12)0.0785 (16)0.0351 (10)0.0199 (11)−0.0003 (9)0.0012 (10)
C250.0512 (11)0.0550 (13)0.0353 (9)0.0064 (9)0.0105 (8)0.0042 (9)
C260.0420 (13)0.156 (3)0.0749 (17)0.0045 (15)0.0056 (12)−0.0146 (18)
N20.0392 (8)0.0470 (10)0.0324 (8)0.0027 (7)0.0007 (6)−0.0040 (7)
O30.0317 (7)0.0740 (11)0.0751 (10)−0.0028 (6)0.0074 (7)−0.0085 (8)
O40.0740 (10)0.0628 (10)0.0528 (8)0.0055 (8)0.0254 (7)0.0143 (7)
S20.0366 (3)0.0491 (3)0.0442 (3)−0.0012 (2)0.01009 (19)−0.0016 (2)

Geometric parameters (Å, °)

C1—C61.381 (3)C14—C151.383 (3)
C1—C21.382 (2)C14—C191.386 (3)
C1—S11.7556 (17)C14—S21.766 (2)
C2—C31.388 (3)C15—C161.380 (3)
C2—H20.9300C15—H150.9300
C3—C41.352 (4)C16—C171.375 (4)
C3—H30.9300C16—H160.9300
C4—C51.385 (3)C17—C181.360 (4)
C4—H40.9300C17—H170.9300
C5—C61.381 (3)C18—C191.391 (4)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—H190.9300
C7—C81.381 (3)C20—C211.385 (3)
C7—C121.389 (2)C20—C251.388 (2)
C7—N11.429 (2)C20—N21.428 (2)
C8—C91.388 (2)C21—C221.380 (3)
C8—H80.9300C21—H210.9300
C9—C101.375 (3)C22—C231.383 (3)
C9—H90.9300C22—H220.9300
C10—C111.382 (3)C23—C241.383 (3)
C10—C131.519 (3)C23—C261.512 (3)
C11—C121.388 (2)C24—C251.391 (3)
C11—H110.9300C24—H240.9300
C12—H120.9300C25—H250.9300
C13—H13A0.9600C26—H26A0.9600
C13—H13B0.9600C26—H26B0.9600
C13—H13C0.9600C26—H26C0.9600
N1—S11.6239 (16)N2—S21.6325 (15)
N1—H1N0.855 (9)N2—H2N0.850 (9)
O1—S11.4384 (12)O3—S21.4282 (13)
O2—S11.4331 (13)O4—S21.4240 (14)
C6—C1—C2121.15 (18)C15—C14—C19120.8 (2)
C6—C1—S1119.52 (14)C15—C14—S2120.13 (15)
C2—C1—S1119.31 (15)C19—C14—S2119.01 (18)
C1—C2—C3118.5 (2)C16—C15—C14120.2 (2)
C1—C2—H2120.7C16—C15—H15119.9
C3—C2—H2120.7C14—C15—H15119.9
C4—C3—C2120.6 (2)C17—C16—C15118.8 (3)
C4—C3—H3119.7C17—C16—H16120.6
C2—C3—H3119.7C15—C16—H16120.6
C3—C4—C5121.0 (2)C18—C17—C16121.4 (3)
C3—C4—H4119.5C18—C17—H17119.3
C5—C4—H4119.5C16—C17—H17119.3
C6—C5—C4119.4 (2)C17—C18—C19120.6 (3)
C6—C5—H5120.3C17—C18—H18119.7
C4—C5—H5120.3C19—C18—H18119.7
C1—C6—C5119.3 (2)C14—C19—C18118.1 (3)
C1—C6—H6120.3C14—C19—H19121.0
C5—C6—H6120.3C18—C19—H19121.0
C8—C7—C12119.38 (16)C21—C20—C25119.24 (17)
C8—C7—N1118.52 (15)C21—C20—N2119.78 (16)
C12—C7—N1122.01 (16)C25—C20—N2120.94 (16)
C7—C8—C9119.90 (17)C22—C21—C20120.32 (18)
C7—C8—H8120.0C22—C21—H21119.8
C9—C8—H8120.0C20—C21—H21119.8
C10—C9—C8121.69 (19)C21—C22—C23121.54 (19)
C10—C9—H9119.2C21—C22—H22119.2
C8—C9—H9119.2C23—C22—H22119.2
C9—C10—C11117.77 (17)C22—C23—C24117.65 (18)
C9—C10—C13121.4 (2)C22—C23—C26121.4 (2)
C11—C10—C13120.8 (2)C24—C23—C26120.9 (2)
C10—C11—C12121.79 (18)C23—C24—C25121.82 (19)
C10—C11—H11119.1C23—C24—H24119.1
C12—C11—H11119.1C25—C24—H24119.1
C11—C12—C7119.47 (18)C20—C25—C24119.41 (18)
C11—C12—H12120.3C20—C25—H25120.3
C7—C12—H12120.3C24—C25—H25120.3
C10—C13—H13A109.5C23—C26—H26A109.5
C10—C13—H13B109.5C23—C26—H26B109.5
H13A—C13—H13B109.5H26A—C26—H26B109.5
C10—C13—H13C109.5C23—C26—H26C109.5
H13A—C13—H13C109.5H26A—C26—H26C109.5
H13B—C13—H13C109.5H26B—C26—H26C109.5
C7—N1—S1124.67 (12)C20—N2—S2121.62 (11)
C7—N1—H1N111.7 (15)C20—N2—H2N119.2 (13)
S1—N1—H1N110.6 (14)S2—N2—H2N107.9 (13)
O2—S1—O1118.67 (8)O4—S2—O3119.13 (9)
O2—S1—N1107.94 (8)O4—S2—N2108.54 (9)
O1—S1—N1105.17 (8)O3—S2—N2105.02 (8)
O2—S1—C1107.24 (8)O4—S2—C14107.85 (9)
O1—S1—C1108.18 (8)O3—S2—C14108.93 (9)
N1—S1—C1109.42 (8)N2—S2—C14106.74 (8)
C6—C1—C2—C31.1 (3)C19—C14—C15—C160.3 (3)
S1—C1—C2—C3−177.38 (17)S2—C14—C15—C16−177.47 (16)
C1—C2—C3—C4−0.6 (4)C14—C15—C16—C170.1 (3)
C2—C3—C4—C5−0.4 (4)C15—C16—C17—C18−0.1 (4)
C3—C4—C5—C60.9 (4)C16—C17—C18—C19−0.3 (5)
C2—C1—C6—C5−0.6 (3)C15—C14—C19—C18−0.6 (3)
S1—C1—C6—C5177.87 (14)S2—C14—C19—C18177.13 (18)
C4—C5—C6—C1−0.4 (3)C17—C18—C19—C140.6 (4)
C12—C7—C8—C9−0.2 (3)C25—C20—C21—C220.5 (3)
N1—C7—C8—C9−176.66 (16)N2—C20—C21—C22178.13 (16)
C7—C8—C9—C10−0.5 (3)C20—C21—C22—C230.9 (3)
C8—C9—C10—C110.6 (3)C21—C22—C23—C24−1.3 (3)
C8—C9—C10—C13179.84 (19)C21—C22—C23—C26179.8 (2)
C9—C10—C11—C12−0.1 (3)C22—C23—C24—C250.3 (3)
C13—C10—C11—C12−179.32 (19)C26—C23—C24—C25179.2 (2)
C10—C11—C12—C7−0.5 (3)C21—C20—C25—C24−1.5 (3)
C8—C7—C12—C110.7 (3)N2—C20—C25—C24−179.07 (17)
N1—C7—C12—C11177.04 (16)C23—C24—C25—C201.1 (3)
C8—C7—N1—S1−133.52 (16)C21—C20—N2—S2118.91 (17)
C12—C7—N1—S150.1 (2)C25—C20—N2—S2−63.5 (2)
C7—N1—S1—O2−56.90 (16)C20—N2—S2—O460.77 (16)
C7—N1—S1—O1175.49 (14)C20—N2—S2—O3−170.79 (14)
C7—N1—S1—C159.49 (17)C20—N2—S2—C14−55.23 (16)
C6—C1—S1—O2−172.89 (14)C15—C14—S2—O4−166.93 (15)
C2—C1—S1—O25.65 (17)C19—C14—S2—O415.29 (19)
C6—C1—S1—O1−43.79 (16)C15—C14—S2—O362.44 (18)
C2—C1—S1—O1134.75 (15)C19—C14—S2—O3−115.33 (17)
C6—C1—S1—N170.28 (16)C15—C14—S2—N2−50.46 (17)
C2—C1—S1—N1−111.19 (16)C19—C14—S2—N2131.76 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (1)2.09 (1)2.924 (2)166 (2)
N2—H2N···O10.85 (1)2.17 (1)3.0056 (19)168 (2)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5173).

References

  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1692. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o434. [PMC free article] [PubMed]
  • Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography