PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m216.
Published online 2010 January 30. doi:  10.1107/S1600536810001595
PMCID: PMC2979837

Octa­aqua­bis(μ2-1H-pyrazole-3,5-di­carboxyl­ato)tricopper(II) tetra­hydrate

Abstract

In the trinucler CuII complex mol­ecule of the title compound, [Cu3(C5HN2O4)2(H2O)8]·4H2O, the central CuII atom is located on an inversion centre and is coordinated in a distorted octa­hedral geometry. The equatorial sites are occupied by two N and two O atoms from two pyrazole-3,5-dicarboxyl­ate ligands and the axial positions are occupied by two water mol­ecules. The two other symmetry-related CuII atoms are penta­coordinated and assume a square-pyramidal geometry. In the crystal structure, coordinated and uncoordinated water mol­ecules and carboxyl­ate O atoms are linked by O—H(...)O hydrogen bonds.

Related literature

For general background to coordination polymers, see: Yaghi et al. (2003 [triangle]); Kitagawa et al. (2004 [triangle]). For related structures, see: King et al. (2003 [triangle]); Li (2005 [triangle]). For graph-set motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m216-scheme1.jpg

Experimental

Crystal data

  • [Cu3(C5HN2O4)2(H2O)8]·4H2O
  • M r = 712.97
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m216-efi1.jpg
  • a = 8.9455 (6) Å
  • b = 9.1018 (7) Å
  • c = 9.1125 (7) Å
  • α = 103.485 (1)°
  • β = 90.924 (1)°
  • γ = 117.505 (1)°
  • V = 633.31 (8) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 2.59 mm−1
  • T = 293 K
  • 0.17 × 0.13 × 0.05 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.666, T max = 0.877
  • 3535 measured reflections
  • 2412 independent reflections
  • 2198 reflections with I > 2σ(I)
  • R int = 0.010

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.095
  • S = 1.08
  • 2412 reflections
  • 205 parameters
  • 12 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.89 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001595/is2499sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001595/is2499Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry.

supplementary crystallographic information

Comment

The design and synthesis of novel coordination architectures is a fertile field due to the intriguing network topologies and potential a pplications as new classes of materials (Yaghi et al., 2003; Kitagawa et al., 2004). The ligand of pyrazole-3,5-dicarboxylic acid has several potential coordination sites involving both two N atoms of the pyrazole ring and four carboxylate O atoms. These multifunctional coordination sites are highly accessible to metal ions, as such, the ligand can coordinate as a mono-, bi-, or tetradentate ligand and can act to link together metal centers through a number of bridging modes (Li, 2005). The divalent copper atoms are easily to precipitate with the OH- when the pyrazole-3,5-dicarboxylic acids are deprotoned in base water solution, the mixed solution can obtain coordianted polymer single crystals in hydrothermal condition (King et al., 2003). Nevertheless, when the ammonia was added to the mixed solution, because of the complexing action between the copper atoms and NH3, the turbid soltuion became clear. After the ammonia slowly evaporated, we obtained the blue crystals, compound (I), as shown in Fig.1, a copper(II) trimer.

The central copper atom, Cu1, lies on a crystallographic inversion center. The Cu1 atom has a six-coordinate octahedral geometry, in which two O atoms and two N atoms from two pyrazole-3,5-dicarboxylate ligands occupy the equatorial plane, and the axial coordination sites are occupied two water molecules; the Cu—N/O bond distances range from 2.003 (2) to 2.437 (3) Å. The other two symmetry-related copper atoms, Cu2, have a pentacoordinate square-pyramidal geometry, where a pyrazole nitrogen N2 and a carboxylate oxygen O3 from one pyrazole-3,5-dicarboxylate ligand occupy two coordination sites and the remaining three positions are occupied by water molecules; the Cu—N/O bond distances range from 1.984 (2) to 2.237 (2) Å. The pyrazole-3,5-dicarboxylate ligand is not strictly planar. Deviation from the mean plane defined by the pyrazole ring is seen for both carboxylate groups with values ranging from 0.034 (1) to 0.205 (1) Å. The dihedral angle between the two carboxylate mean planes is 11.3 (3)°. It can be seen that the ligand bite angle at the two different copper centers Cu1 and Cu2 is similar, 74.8 (4) and 80.6 (4)°, respectively. This implies that the pyrazole-3,5-dicarboxylate ligand is a fairly rigid ligand and retains its integrity on metal chelation.

In the asymmetric unit, there are two lattice water molecules, four coordinated water molecules and carboxylate O atoms, which form complexed hydrogen-bonding interactions. Two lattice water molecules and its symmetric equivalents together with two carboxylate O atoms from two trimers form a hydrogen-bonded chair conformation, generating an R46(6) motif (Bernstein et al., 1995). Meanwhile, the four lattice water molecules in each R46(6) motif also bind four another trimers by O7—H7B···O4 hydrogen bond interaction, and O5—H5B···O8 hydrogen bond interaction. Those strong hydrogen-bonding interactions as well as some weaker interactions, such as O5—H5A···O1, O6—H6A···O8, O6—H6B···O2 and O9—H9A···O4, extend the crystal structure into a three-dimensional supramolecular network (Fig. 2).

Experimental

The title complex was prepared by the addition of Cu(BF4)2 (20 mmol) and pyrazole-3,5-dicarboxylic acid (30 mmol) to 40 ml water. The mixture was stirred for 1 h, a blue precipitate was obtained. A minimum amount of ammonia (14 M) was added to give a blue solution. Suitable crystals were obtained after standing at room temperature for several days (yield 51% based on Cu).

Refinement

Atom H2 was placed geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = Ueq(C). The H atoms bonded to O atoms of water molecules were located in a difference Fourier map and refined, with a bond distance restriction [O—H = 0.82 (2) Å], and with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
A view of (I), with the atom-labeling scheme and 30% probability displacement ellipsoids. [Symmetry code: (A) 1 - x, 1 - y, -z.]
Fig. 2.
Perspective view of packing structure of (I) along the c axis. For the sake of clarity, H atoms not involved in hydrogen bonds have been omitted.

Crystal data

[Cu3(C5HN2O4)2(H2O)8]·4H2OZ = 1
Mr = 712.97F(000) = 361
Triclinic, P1Dx = 1.869 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9455 (6) ÅCell parameters from 2128 reflections
b = 9.1018 (7) Åθ = 2.3–26.0°
c = 9.1125 (7) ŵ = 2.59 mm1
α = 103.485 (1)°T = 293 K
β = 90.924 (1)°Tabular, blue
γ = 117.505 (1)°0.17 × 0.13 × 0.05 mm
V = 633.31 (8) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer2412 independent reflections
Radiation source: fine-focus sealed tube2198 reflections with I > 2σ(I)
graphiteRint = 0.010
[var phi] and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→11
Tmin = 0.666, Tmax = 0.877k = −11→9
3535 measured reflectionsl = −11→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0495P)2 + 1.615P] where P = (Fo2 + 2Fc2)/3
2412 reflections(Δ/σ)max = 0.042
205 parametersΔρmax = 0.89 e Å3
12 restraintsΔρmin = −0.54 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.50000.00000.01250 (16)
Cu20.18693 (5)0.39943 (5)0.35269 (4)0.01365 (14)
O10.4661 (3)0.8149 (3)0.7106 (3)0.0205 (5)
O20.2463 (3)0.5801 (3)0.5590 (3)0.0180 (5)
O30.8061 (3)0.6833 (3)0.0762 (3)0.0187 (5)
O40.9786 (3)0.8716 (3)0.2903 (3)0.0198 (5)
O50.4555 (4)0.6959 (4)−0.0015 (3)0.0319 (7)
H5A0.420 (6)0.690 (7)−0.093 (3)0.038*
H5B0.541 (5)0.797 (4)0.040 (5)0.038*
O6−0.0225 (4)0.2439 (4)0.4269 (4)0.0318 (7)
H6A−0.091 (5)0.148 (4)0.360 (5)0.038*
H6B−0.083 (6)0.291 (6)0.468 (5)0.038*
O70.2443 (4)0.8545 (4)0.1630 (3)0.0268 (6)
H7A0.330 (4)0.923 (5)0.219 (5)0.032*
H7B0.159 (4)0.848 (6)0.198 (5)0.032*
O80.2631 (4)0.9378 (4)0.8781 (3)0.0280 (6)
H8A0.245 (6)0.913 (6)0.958 (3)0.034*
H8B0.316 (5)0.899 (6)0.826 (5)0.034*
O90.1851 (4)0.2020 (4)0.1939 (4)0.0335 (7)
H9A0.104 (5)0.102 (4)0.195 (6)0.040*
H9B0.282 (4)0.202 (7)0.197 (6)0.040*
O100.0459 (4)0.4770 (5)0.2092 (4)0.0415 (8)
H10A0.102 (6)0.580 (4)0.202 (6)0.050*
H10B−0.052 (4)0.452 (7)0.238 (6)0.050*
N10.5326 (3)0.5804 (4)0.2330 (3)0.0135 (6)
N20.4214 (3)0.5670 (4)0.3334 (3)0.0136 (6)
C10.5045 (4)0.6944 (4)0.4637 (4)0.0136 (6)
C20.6742 (4)0.7934 (4)0.4484 (4)0.0151 (7)
H20.75970.88840.51960.015*
C30.6852 (4)0.7162 (4)0.3012 (4)0.0125 (6)
C40.4011 (4)0.6993 (4)0.5882 (4)0.0153 (7)
C50.8344 (4)0.7607 (4)0.2152 (4)0.0136 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0145 (3)0.0118 (3)0.0090 (3)0.0055 (2)0.0011 (2)0.0007 (2)
Cu20.0111 (2)0.0123 (2)0.0137 (2)0.00298 (17)0.00279 (15)0.00235 (16)
O10.0194 (12)0.0210 (13)0.0134 (12)0.0060 (11)0.0028 (10)−0.0012 (10)
O20.0141 (12)0.0167 (12)0.0181 (12)0.0045 (10)0.0046 (9)0.0018 (10)
O30.0171 (12)0.0216 (13)0.0122 (12)0.0056 (10)0.0040 (9)0.0030 (10)
O40.0116 (11)0.0210 (13)0.0172 (12)0.0012 (10)0.0018 (9)0.0026 (10)
O50.0366 (17)0.0299 (16)0.0294 (16)0.0160 (14)0.0037 (13)0.0082 (13)
O60.0251 (15)0.0303 (16)0.0354 (17)0.0099 (13)0.0063 (12)0.0076 (13)
O70.0209 (14)0.0209 (14)0.0335 (16)0.0080 (12)0.0098 (12)0.0025 (12)
O80.0286 (15)0.0294 (16)0.0257 (15)0.0154 (13)0.0053 (12)0.0033 (12)
O90.0323 (16)0.0270 (16)0.0358 (17)0.0100 (13)0.0082 (13)0.0076 (13)
O100.0351 (18)0.0381 (19)0.054 (2)0.0156 (16)0.0024 (16)0.0220 (16)
N10.0125 (13)0.0140 (14)0.0123 (13)0.0050 (11)0.0035 (10)0.0035 (11)
N20.0119 (13)0.0146 (14)0.0112 (13)0.0044 (11)0.0020 (10)0.0018 (11)
C10.0136 (15)0.0139 (16)0.0119 (15)0.0057 (13)0.0014 (12)0.0032 (12)
C20.0125 (15)0.0157 (17)0.0132 (16)0.0039 (13)0.0005 (12)0.0031 (13)
C30.0127 (15)0.0126 (16)0.0103 (15)0.0047 (13)−0.0010 (12)0.0027 (12)
C40.0149 (16)0.0166 (17)0.0152 (16)0.0081 (14)0.0031 (13)0.0047 (13)
C50.0150 (16)0.0130 (17)0.0133 (16)0.0064 (14)0.0037 (13)0.0048 (13)

Geometric parameters (Å, °)

Cu1—O52.001 (3)O6—H6B0.87 (6)
Cu1—O5i2.001 (3)O7—H7A0.80 (2)
Cu1—N12.047 (3)O7—H7B0.81 (2)
Cu1—N1i2.047 (3)O8—H8A0.81 (2)
Cu1—O3i2.437 (2)O8—H8B0.81 (5)
Cu1—O32.437 (2)O9—H9A0.87 (2)
Cu2—N21.985 (3)O9—H9B0.87 (5)
Cu2—O62.002 (3)O10—H10A0.85 (2)
Cu2—O92.021 (3)O10—H10B0.86 (5)
Cu2—O22.059 (2)N1—N21.345 (4)
Cu2—O102.236 (3)N1—C31.354 (4)
O1—C41.247 (4)N2—C11.357 (4)
O2—C41.277 (4)C1—C21.392 (5)
O3—C51.255 (4)C1—C41.481 (5)
O4—C51.264 (4)C2—C31.390 (5)
O5—H5A0.87 (2)C2—H20.9300
O5—H5B0.87 (2)C3—C51.497 (4)
O6—H6A0.87 (2)
O5—Cu1—O5i180.0Cu2—O6—H6B116 (3)
O5—Cu1—N187.36 (12)H6A—O6—H6B108 (5)
O5i—Cu1—N192.64 (12)H7A—O7—H7B113 (5)
O5—Cu1—N1i92.64 (12)H8A—O8—H8B117 (5)
O5i—Cu1—N1i87.36 (12)Cu2—O9—H9A114 (3)
N1—Cu1—N1i180.00 (18)Cu2—O9—H9B114 (3)
O5—Cu1—O3i85.89 (11)H9A—O9—H9B110 (5)
O5i—Cu1—O3i94.11 (11)Cu2—O10—H10A115 (4)
N1—Cu1—O3i105.11 (9)Cu2—O10—H10B109 (4)
N1i—Cu1—O3i74.89 (9)H10A—O10—H10B114 (6)
O5—Cu1—O394.11 (11)N2—N1—C3107.6 (3)
O5i—Cu1—O385.89 (11)N2—N1—Cu1132.2 (2)
N1—Cu1—O374.89 (9)C3—N1—Cu1116.3 (2)
N1i—Cu1—O3105.11 (9)N1—N2—C1108.4 (3)
O3i—Cu1—O3180.0N1—N2—Cu2137.8 (2)
N2—Cu2—O6165.29 (12)C1—N2—Cu2113.2 (2)
N2—Cu2—O993.98 (12)N2—C1—C2110.0 (3)
O6—Cu2—O992.94 (13)N2—C1—C4115.9 (3)
N2—Cu2—O280.69 (10)C2—C1—C4134.1 (3)
O6—Cu2—O288.18 (11)C3—C2—C1103.4 (3)
O9—Cu2—O2158.66 (12)C3—C2—H2128.3
N2—Cu2—O1097.78 (12)C1—C2—H2128.3
O6—Cu2—O1093.87 (13)N1—C3—C2110.6 (3)
O9—Cu2—O1099.41 (14)N1—C3—C5119.3 (3)
O2—Cu2—O10101.78 (12)C2—C3—C5130.1 (3)
C4—O2—Cu2114.3 (2)O1—C4—O2124.6 (3)
C5—O3—Cu1109.0 (2)O1—C4—C1120.1 (3)
Cu1—O5—H5A111 (3)O2—C4—C1115.2 (3)
Cu1—O5—H5B115 (3)O3—C5—O4125.8 (3)
H5A—O5—H5B110 (5)O3—C5—C3117.4 (3)
Cu2—O6—H6A115 (3)O4—C5—C3116.8 (3)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O1ii0.87 (3)2.28 (4)3.050 (4)148 (4)
O5—H5B···O8iii0.87 (4)2.16 (4)3.021 (5)172 (4)
O6—H6A···O8iv0.87 (4)2.38 (5)3.078 (4)137 (4)
O6—H6B···O2iv0.87 (6)2.30 (6)3.077 (4)149 (4)
O7—H7A···O1iii0.80 (4)2.16 (4)2.860 (4)147 (4)
O7—H7B···O4v0.81 (4)1.91 (4)2.715 (4)171 (4)
O8—H8A···O7vi0.81 (3)2.06 (3)2.854 (4)169 (4)
O8—H8B···O10.81 (5)2.03 (5)2.836 (4)175 (4)
O9—H9A···O4vii0.87 (4)2.26 (4)3.061 (4)154 (4)

Symmetry codes: (ii) x, y, z−1; (iii) −x+1, −y+2, −z+1; (iv) −x, −y+1, −z+1; (v) x−1, y, z; (vi) x, y, z+1; (vii) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2499).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (1998). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • King, P., Clerac, R., Anson, C. E., Coulon, C. & Powell, A. K. (2003). Inorg. Chem.423, 705–714.
  • Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed.43, 2334–2375. [PubMed]
  • Li, X.-H. (2005). Acta Cryst. E61, m2405–m2407.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography