PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m137.
Published online 2010 January 9. doi:  10.1107/S1600536810000498
PMCID: PMC2979836

Poly[(μ5-2-methyl-3,5-dinitro­benzoato)sodium]

Abstract

In the crystal of the title coordination polymer, [Na(C8H5N2O6)]n, the Na(I) ion is linked to five nearby anions. Their bonding modes are three monodentate carboxyl­ate O atoms, one O,O′-bidentate carboxyl­ate group and one O,O′-bidentate nitro group. This results in an irregular NaO7 coordination geometry for the metal ion. This connectivity leads to a layered network propagating in (100).

Related literature

For the structure of a trimethyl-tin complex with the ortho-toluate ligand, see: Danish et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m137-scheme1.jpg

Experimental

Crystal data

  • [Na(C8H5N2O6)]
  • M r = 248.13
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m137-efi2.jpg
  • a = 27.8428 (13) Å
  • b = 10.452 (2) Å
  • c = 6.642 (6) Å
  • V = 1932.8 (17) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.18 mm−1
  • T = 293 K
  • 0.42 × 0.14 × 0.08 mm

Data collection

  • Kuma KM-4 four-circle diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.975, T max = 0.984
  • 2659 measured reflections
  • 2406 independent reflections
  • 1273 reflections with I > 2σ(I)
  • R int = 0.047
  • 3 standard reflections every 200 reflections intensity decay: 0.01%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.132
  • S = 1.00
  • 2406 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: KM-4 Software (Kuma, 1996 [triangle]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000498/hb5280sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000498/hb5280Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MD is grateful to the Australian Government for the award of Endeavour Post Doctoral Fellowships for the year 2009–2010

supplementary crystallographic information

Comment

The structure of compound (1) is composed of molecular sheets in which Na(I) ions are bridged by ligand carboxylate and nitro-group O atoms. The carboxylate O1 atom acts as bidentate and chelates Na1 and Na1(IV) ions, the O2 atom is bonded to Na1(II) and Na1(V) ions and to the Na1 ion at a longer distance of 2.780 (2) Å. The O1, O2, Na and Na(II) ions form a distorted plane [r.m.s. 0.0261 (2) Å], the O1 atom chelates the Na(IV) ion below this plane, the O2 atom - the Na(V)ion above, giving rise to a molecular column. However, when distances between atoms from a nitro-group of an adjacent ligand to the Na ion are accounted for, the columns form molecular sheets. The coordination geometry of the Na1 ion is represented by a strongly distorted eight-faced polyhedron with an equatorial plane formed by carboxylate O1 and O2(II), nitro O21(VI) and O22(VI) atoms and Na1 [r.m.s. 0.1217 (2)Å]. Carboxylate O2(IV) is at an apex on one side, O2 and O1(V) form two apices on the other side of the equatorial plane. The toluene ring is planar [r.m.s. 0.0070 (2) Å], the carboxylate group makes with it a dihedral angle of 78.0 (2)o, the nitro-groups - dihedral angles of 42.0 (2)o (N1/O11/O12) and 9.5 (2)o (N2/O21/O22). The sheets are held together via weak interactions of the van der Waals type since the closest approach between two atoms from adjacent sheets is 3.54 (4) Å.

Experimental

0.0119 mol of 3,5-dinitro-ortho toluic acid was suspended in 15 ml of distilled water contained in a round-bottom flask. Then, 0.0119 mol of an aqueous solution of sodium bicarbonate was added drop-wise with stirring. The mixture was refluxed for 3 h and concentrated to half of its volume, then left at room temperature. Crude crystals appeared within a week. Yellow needles of (I) crystals were obtained by recrystallization from a water/ethanol 3:1 mixture at room temperature.

Refinement

H atoms attached to toluene-ring C atoms were positioned geometrically and refined with a riding model.

Figures

Fig. 1.
A structural unit of (1) with 50% probability displacement ellipsoids. Symmetry code: (I)x,y + 1,z; (II) -x + 2,-y,-z + 2; (III) -x + 2,y,-z + 3/2; (IV)x,-y,z - 1/2; (V)x,-y,z + 1/2; (VI)x,y - 1,z.
Fig. 2.
Packing diagram of the structure.

Crystal data

[Na(C8H5N2O6)]Dx = 1.705 Mg m3
Mr = 248.13Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 25 reflections
a = 27.8428 (13) Åθ = 6–15°
b = 10.452 (2) ŵ = 0.18 mm1
c = 6.642 (6) ÅT = 293 K
V = 1932.8 (17) Å3Needle, yellow
Z = 80.42 × 0.14 × 0.08 mm
F(000) = 1008

Data collection

Kuma KM-4 four-circle diffractometer1273 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
graphiteθmax = 29.1°, θmin = 1.5°
profile data from ω/2θ scansh = 0→36
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008)k = −14→1
Tmin = 0.975, Tmax = 0.984l = 0→9
2659 measured reflections3 standard reflections every 200 reflections
2406 independent reflections intensity decay: 0.01%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0681P)2 + 0.6169P] where P = (Fo2 + 2Fc2)/3
2406 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Na10.95606 (3)−0.10192 (7)0.92650 (12)0.0318 (2)
O20.96094 (6)0.14635 (16)1.0752 (2)0.0389 (4)
O110.75046 (8)0.2906 (2)0.8738 (4)0.0747 (7)
O10.93442 (7)0.10334 (16)0.7707 (3)0.0482 (5)
N10.77183 (7)0.3679 (2)0.9765 (4)0.0427 (5)
C10.90187 (7)0.28318 (18)0.9385 (3)0.0246 (4)
C70.93555 (7)0.16846 (18)0.9265 (3)0.0268 (4)
C50.89172 (7)0.50978 (19)0.9440 (3)0.0273 (4)
C30.82465 (7)0.3756 (2)0.9576 (3)0.0294 (5)
C20.85223 (7)0.26469 (19)0.9491 (3)0.0283 (5)
C40.84279 (7)0.4982 (2)0.9550 (3)0.0287 (4)
H40.82280.56950.96040.034*
C60.92178 (8)0.40496 (18)0.9386 (3)0.0273 (4)
H60.95490.41570.93500.033*
C80.83187 (9)0.1325 (2)0.9644 (5)0.0479 (7)
H8A0.80390.13391.04890.072*
H8B0.85550.07621.02140.072*
H8C0.82320.10270.83260.072*
O120.75280 (7)0.4416 (2)1.0929 (3)0.0605 (6)
N20.91229 (7)0.63855 (17)0.9404 (3)0.0328 (4)
O210.88557 (7)0.72989 (15)0.9215 (3)0.0461 (5)
O220.95584 (7)0.64912 (16)0.9575 (3)0.0537 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Na10.0349 (5)0.0263 (4)0.0341 (5)−0.0013 (3)0.0000 (4)0.0016 (3)
O20.0341 (9)0.0433 (9)0.0392 (9)0.0091 (7)−0.0041 (7)0.0086 (7)
O110.0389 (9)0.0753 (15)0.1098 (19)−0.0043 (11)−0.0178 (13)−0.0198 (15)
O10.0640 (12)0.0410 (9)0.0396 (10)0.0191 (9)0.0004 (9)−0.0092 (8)
N10.0259 (9)0.0409 (10)0.0614 (14)0.0058 (8)−0.0002 (10)0.0064 (11)
C10.0269 (9)0.0237 (8)0.0233 (10)0.0025 (7)−0.0026 (9)0.0012 (8)
C70.0245 (9)0.0250 (9)0.0309 (11)0.0025 (8)0.0038 (9)0.0057 (9)
C50.0373 (11)0.0244 (9)0.0204 (9)−0.0007 (8)−0.0007 (9)0.0008 (8)
C30.0257 (10)0.0349 (11)0.0276 (10)0.0022 (8)−0.0011 (8)−0.0009 (9)
C20.0275 (10)0.0283 (10)0.0292 (11)−0.0004 (8)−0.0018 (9)0.0014 (9)
C40.0332 (9)0.0294 (9)0.0235 (10)0.0085 (9)0.0002 (9)0.0016 (8)
C60.0291 (10)0.0279 (9)0.0247 (10)−0.0015 (8)−0.0004 (8)0.0018 (9)
C80.0372 (12)0.0314 (11)0.0751 (19)−0.0062 (10)0.0010 (14)0.0028 (12)
O120.0391 (9)0.0542 (11)0.0881 (15)0.0131 (9)0.0199 (11)0.0039 (12)
N20.0467 (11)0.0250 (8)0.0266 (9)−0.0013 (8)0.0019 (9)0.0017 (7)
O210.0611 (12)0.0252 (7)0.0518 (11)0.0044 (7)−0.0022 (10)0.0003 (7)
O220.0440 (10)0.0352 (9)0.0819 (14)−0.0116 (8)0.0011 (10)0.0017 (9)

Geometric parameters (Å, °)

Na1—O12.4567 (19)C1—C21.397 (3)
Na1—O22.780 (2)C1—C71.524 (3)
Na1—O2i2.3571 (17)C5—C41.370 (3)
Na1—O1ii2.364 (3)C5—C61.379 (3)
Na1—O2iii2.383 (3)C5—N21.463 (3)
Na1—O22iv2.6102 (19)C3—C41.377 (3)
Na1—O21iv2.635 (2)C3—C21.392 (3)
Na1—Na1i3.3881 (17)C2—C81.497 (3)
Na1—Na1v3.389 (2)C4—H40.9300
Na1—Na1iii3.946 (3)C6—H60.9300
O2—C71.237 (3)C8—H8A0.9600
O2—Na1i2.3571 (17)C8—H8B0.9600
O2—Na1ii2.383 (3)C8—H8C0.9600
O11—N11.213 (3)N2—O211.217 (2)
O1—C71.239 (3)N2—O221.223 (2)
O1—Na1iii2.364 (3)N2—Na1vi2.975 (2)
N1—O121.212 (3)O21—Na1vi2.635 (2)
N1—C31.478 (3)O22—Na1vi2.6102 (19)
C1—C61.388 (3)
O2i—Na1—O1ii104.67 (7)C6—C1—C2121.45 (18)
O2i—Na1—O2iii84.31 (7)C6—C1—C7118.39 (18)
O1ii—Na1—O2iii163.77 (7)C2—C1—C7120.16 (17)
O2i—Na1—O1114.23 (7)O2—C7—O1125.38 (19)
O1ii—Na1—O1110.50 (7)O2—C7—C1117.19 (18)
O2iii—Na1—O176.81 (7)O1—C7—C1117.40 (18)
O2i—Na1—O22iv78.83 (6)C4—C5—C6122.34 (19)
O1ii—Na1—O22iv85.23 (7)C4—C5—N2118.12 (18)
O2iii—Na1—O22iv83.28 (7)C6—C5—N2119.53 (19)
O1—Na1—O22iv154.57 (7)C4—C3—C2124.91 (19)
O2i—Na1—O21iv126.78 (6)C4—C3—N1114.59 (18)
O1ii—Na1—O21iv79.53 (6)C2—C3—N1120.47 (19)
O2iii—Na1—O21iv84.27 (6)C3—C2—C1115.62 (18)
O1—Na1—O21iv113.24 (7)C3—C2—C8123.86 (19)
O22iv—Na1—O21iv48.26 (6)C1—C2—C8120.38 (18)
O2i—Na1—O297.91 (6)C5—C4—C3116.57 (19)
O1ii—Na1—O271.01 (6)C5—C4—H4121.7
O2iii—Na1—O2121.81 (6)C3—C4—H4121.7
O1—Na1—O249.20 (6)C5—C6—C1119.07 (19)
O22iv—Na1—O2154.51 (7)C5—C6—H6120.5
O21iv—Na1—O2131.58 (6)C1—C6—H6120.5
C7—O2—Na1i126.39 (14)C2—C8—H8A109.5
C7—O2—Na1ii141.83 (14)C2—C8—H8B109.5
Na1i—O2—Na1ii91.28 (6)H8A—C8—H8B109.5
C7—O2—Na182.10 (12)C2—C8—H8C109.5
Na1i—O2—Na182.09 (6)H8A—C8—H8C109.5
Na1ii—O2—Na199.40 (6)H8B—C8—H8C109.5
C7—O1—Na1iii143.56 (16)O21—N2—O22123.02 (18)
C7—O1—Na197.00 (14)O21—N2—C5118.96 (19)
Na1iii—O1—Na1109.83 (7)O22—N2—C5118.02 (17)
O12—N1—O11124.5 (2)N2—O21—Na1vi93.83 (13)
O12—N1—C3117.0 (2)N2—O22—Na1vi94.88 (13)
O11—N1—C3118.5 (2)

Symmetry codes: (i) −x+2, −y, −z+2; (ii) x, −y, z+1/2; (iii) x, −y, z−1/2; (iv) x, y−1, z; (v) −x+2, y, −z+3/2; (vi) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5280).

References

  • Danish, M., Saleem, I., Ahmad, N., Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m4.
  • Kuma (1996). KM-4 Software Kuma Diffraction Ltd, Wrocław, Poland.
  • Kuma (2001). DATAPROC Kuma Diffraction Ltd, Wrocław, Poland.
  • Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd, Yarnton, England
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography