PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o441.
Published online 2010 January 23. doi:  10.1107/S1600536810001789
PMCID: PMC2979833

3,3′-Dibutanoyl-1,1′-(o-phenyl­ene)dithio­urea

Abstract

The mol­ecular conformation of the title compound, C16H22N4O2S2, is stabilized by two intramolecular N—H(...)O hydrogen bonds. The crystal packing shows N—H(...)O and N—H(...)S hydrogen bonds.

Related literature

For details of the biological activity of bisthio­ureas, see: Berkessel et al. (2006 [triangle]); Moloto et al. (2004 [triangle]). For their applications, see: Atia et al. (2005 [triangle]); Hu et al. (2009 [triangle]); Phetsuksiri et al. (2003 [triangle]). For the synthesis of the title compound, see: Succaw et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o441-scheme1.jpg

Experimental

Crystal data

  • C16H22N4O2S2
  • M r = 366.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o441-efi1.jpg
  • a = 8.8099 (5) Å
  • b = 16.4925 (7) Å
  • c = 12.3923 (8) Å
  • β = 91.949 (5)°
  • V = 1799.53 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 173 K
  • 0.28 × 0.28 × 0.23 mm

Data collection

  • Stoe IPDS II two-circle diffractometer
  • Absorption correction: multi-scan (MULABS; Spek, 2009 [triangle]; Blessing, 1995 [triangle]) T min = 0.918, T max = 0.932
  • 22483 measured reflections
  • 3360 independent reflections
  • 2890 reflections with I > 2σ(I)
  • R int = 0.087

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.095
  • S = 1.04
  • 3360 reflections
  • 229 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA (Stoe & Cie, 2001 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001789/bg2318sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001789/bg2318Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NA gratefully acknowledges a research scholarship from the HEC Islamabad under the HEC Indigenous PhD Schol­arship 5000 Scheme

supplementary crystallographic information

Comment

Various bisthiourea derivatives have attracted much attention due to their variety of applications and bioactivities. The presence of multivalent binding sites in bis thioureas provide a multitude of bonding possibilities. Urea and thiourea functionalities, presenting opportunities for the formation of diverse hydrogen bonded networks, represent powerful crystal engineering building blocks (Succaw et al., 2005). The fluorinated bis-thiourea derivative are used as organocatalyst in Morita-Baylis-Hillman reaction (Berkessel et al., 2006). N-alkyl thiourea Cadmium(II) complex as precursor for CdS-nanoparticle synthesis (Moloto et al., 2004). BINOL (1,1'-Bi-2-naphthol) bis thiourea derivatives act as chemosensors (Hu et al.,2009). Bis-thiourea resins have been used for adsorption of silver(I) and gold(II) for application to retrieval of silver ions from processed photo films (Atia et al., 2005). Diisoamyloxydiphenylthioureas are effective anti-tuberculosis agents (Phetsuksiri et al. (2003).

The molecular conformation of the title compound is stabilized by two N—H···O hydrogen bonds. The crystal packing shows N—H···O and N—H···S hydrogen bonds.

Experimental

The compound was prepared acc ording to lierature procedure (Succaw et al., 2005) and Recrystallized from methanol as colourless crystals: Anal. calcd.for C16H22N4O2S2: C, 52.43; H, 6.05; N, 15.29; S, 17.50%; found: C, 52.31; H, 6.19; N, 15.41; S, 17.62.

Refinement

H atoms attached to C were geometrically positioned and refined using a riding model with C—H(aromatic) = 0.95 Å, CH(methyl) = 0.98 Å, or CH(methylene) = 0.99 Å, respectively. The position of the amino H atoms were freely refined. In all cases fixed individual displacement parameters

[U(H) = 1.2 Ueq(Caromatic), 1.2 Ueq(N); 1.5 Ueq(Cmethyl)] were used.

Figures

Fig. 1.
Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C16H22N4O2S2F(000) = 776
Mr = 366.50Dx = 1.353 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 20465 reflections
a = 8.8099 (5) Åθ = 3.4–26.0°
b = 16.4925 (7) ŵ = 0.31 mm1
c = 12.3923 (8) ÅT = 173 K
β = 91.949 (5)°Block, colourless
V = 1799.53 (17) Å30.28 × 0.28 × 0.23 mm
Z = 4

Data collection

Stoe IPDS II two-circle diffractometer3360 independent reflections
Radiation source: fine-focus sealed tube2890 reflections with I > 2σ(I)
graphiteRint = 0.087
ω scansθmax = 25.6°, θmin = 3.4°
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995)h = −10→10
Tmin = 0.918, Tmax = 0.932k = −19→18
22483 measured reflectionsl = −15→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0595P)2 + 0.139P] where P = (Fo2 + 2Fc2)/3
3360 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.07444 (5)0.68569 (3)0.35994 (3)0.02446 (14)
S20.47542 (5)0.79179 (3)0.52094 (3)0.02947 (14)
O10.38901 (14)0.53284 (9)0.57778 (9)0.0278 (3)
O20.83408 (13)0.59749 (8)0.58037 (9)0.0224 (3)
C10.42857 (18)0.65251 (9)0.31239 (12)0.0152 (3)
C20.57714 (18)0.67920 (9)0.33537 (12)0.0154 (3)
C30.66576 (19)0.70843 (10)0.25383 (13)0.0206 (3)
H30.76740.72490.26950.025*
C40.6054 (2)0.71355 (11)0.14871 (13)0.0228 (4)
H40.66540.73420.09270.027*
C50.4579 (2)0.68847 (10)0.12589 (12)0.0211 (4)
H50.41700.69240.05420.025*
C60.36860 (19)0.65746 (10)0.20698 (12)0.0180 (3)
H60.26780.63990.19060.022*
N110.34909 (15)0.61572 (8)0.39740 (10)0.0160 (3)
H110.401 (2)0.5867 (12)0.4430 (16)0.019*
C110.20588 (17)0.62849 (10)0.42462 (12)0.0159 (3)
N120.16371 (16)0.58921 (8)0.51872 (10)0.0168 (3)
H120.072 (2)0.5945 (12)0.5357 (15)0.020*
C120.25388 (19)0.54519 (10)0.59085 (12)0.0195 (3)
C130.1723 (2)0.51260 (12)0.68687 (14)0.0272 (4)
H13A0.13160.45810.66910.033*
H13B0.08520.54840.70170.033*
C140.2751 (2)0.50692 (12)0.78795 (14)0.0285 (4)
H14A0.22060.47760.84460.034*
H14B0.36630.47480.77110.034*
C150.3251 (3)0.58888 (14)0.83166 (17)0.0447 (5)
H15A0.39120.58120.89610.054*
H15B0.23570.62050.85060.054*
H15C0.38090.61790.77650.054*
N210.64067 (16)0.67101 (9)0.44277 (10)0.0170 (3)
H210.708 (2)0.6374 (13)0.4558 (15)0.020*
C210.59630 (17)0.71486 (10)0.52676 (12)0.0171 (3)
N220.65944 (15)0.69253 (8)0.62711 (11)0.0172 (3)
H220.630 (2)0.7231 (13)0.6794 (16)0.021*
C220.77077 (18)0.63670 (10)0.65070 (12)0.0178 (3)
C230.8064 (2)0.62499 (11)0.76915 (12)0.0223 (4)
H23A0.74620.66360.81140.027*
H23B0.91540.63610.78470.027*
C240.7692 (2)0.53829 (12)0.80244 (14)0.0308 (4)
H24A0.66170.52640.78250.037*
H24B0.83350.50000.76270.037*
C250.7954 (4)0.52563 (15)0.92284 (17)0.0580 (8)
H25A0.76940.46970.94150.070*
H25B0.73140.56320.96230.070*
H25C0.90240.53580.94240.070*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0188 (2)0.0308 (3)0.0237 (2)0.00497 (16)0.00078 (16)0.01004 (17)
S20.0334 (3)0.0301 (3)0.0245 (2)0.01694 (19)−0.00509 (18)−0.00387 (18)
O10.0216 (6)0.0399 (8)0.0223 (6)0.0105 (5)0.0046 (5)0.0104 (5)
O20.0225 (6)0.0264 (7)0.0184 (6)0.0085 (5)−0.0012 (4)−0.0018 (5)
C10.0168 (7)0.0135 (8)0.0153 (7)0.0021 (6)0.0025 (6)0.0011 (6)
C20.0181 (8)0.0137 (8)0.0144 (7)0.0028 (6)−0.0005 (6)−0.0001 (6)
C30.0182 (8)0.0201 (9)0.0236 (8)0.0003 (6)0.0022 (6)0.0020 (6)
C40.0268 (9)0.0219 (9)0.0200 (8)0.0017 (7)0.0073 (6)0.0058 (7)
C50.0289 (9)0.0213 (9)0.0130 (7)0.0052 (7)0.0006 (6)0.0007 (6)
C60.0191 (8)0.0172 (8)0.0175 (7)0.0012 (6)−0.0026 (6)−0.0011 (6)
N110.0152 (6)0.0189 (7)0.0138 (6)0.0005 (5)−0.0007 (5)0.0040 (5)
C110.0175 (8)0.0155 (8)0.0145 (7)−0.0034 (6)−0.0010 (6)−0.0020 (6)
N120.0137 (7)0.0200 (7)0.0168 (6)0.0006 (5)0.0021 (5)0.0035 (5)
C120.0216 (8)0.0201 (8)0.0169 (7)0.0026 (6)0.0017 (6)0.0010 (6)
C130.0256 (9)0.0324 (10)0.0242 (8)0.0047 (7)0.0063 (7)0.0108 (7)
C140.0391 (10)0.0280 (10)0.0187 (8)0.0083 (8)0.0043 (7)0.0074 (7)
C150.0663 (16)0.0377 (12)0.0303 (10)0.0012 (11)0.0033 (10)−0.0059 (9)
N210.0153 (7)0.0195 (7)0.0159 (6)0.0045 (5)−0.0027 (5)−0.0006 (5)
C210.0147 (7)0.0185 (8)0.0180 (7)−0.0001 (6)0.0001 (6)0.0006 (6)
N220.0190 (7)0.0177 (7)0.0148 (6)0.0015 (5)−0.0010 (5)−0.0029 (5)
C220.0186 (8)0.0168 (8)0.0178 (7)−0.0021 (6)−0.0028 (6)0.0003 (6)
C230.0296 (9)0.0203 (9)0.0167 (8)0.0036 (7)−0.0047 (6)−0.0010 (6)
C240.0442 (11)0.0265 (10)0.0215 (8)−0.0072 (8)0.0001 (8)0.0024 (7)
C250.115 (2)0.0344 (13)0.0240 (10)−0.0185 (14)−0.0110 (12)0.0085 (9)

Geometric parameters (Å, °)

S1—C111.6763 (16)C13—H13A0.9900
S2—C211.6566 (16)C13—H13B0.9900
O1—C121.224 (2)C14—C151.516 (3)
O2—C221.234 (2)C14—H14A0.9900
C1—C61.395 (2)C14—H14B0.9900
C1—C21.401 (2)C15—H15A0.9800
C1—N111.4207 (19)C15—H15B0.9800
C2—C31.385 (2)C15—H15C0.9800
C2—N211.4325 (19)N21—C211.337 (2)
C3—C41.393 (2)N21—H210.83 (2)
C3—H30.9500C21—N221.395 (2)
C4—C51.384 (3)N22—C221.370 (2)
C4—H40.9500N22—H220.87 (2)
C5—C61.394 (2)C22—C231.503 (2)
C5—H50.9500C23—C241.527 (3)
C6—H60.9500C23—H23A0.9900
N11—C111.334 (2)C23—H23B0.9900
N11—H110.86 (2)C24—C251.516 (3)
C11—N121.395 (2)C24—H24A0.9900
N12—C121.382 (2)C24—H24B0.9900
N12—H120.84 (2)C25—H25A0.9800
C12—C131.510 (2)C25—H25B0.9800
C13—C141.524 (3)C25—H25C0.9800
C6—C1—C2119.57 (14)C15—C14—H14B108.9
C6—C1—N11122.61 (14)C13—C14—H14B108.9
C2—C1—N11117.65 (13)H14A—C14—H14B107.7
C3—C2—C1120.47 (14)C14—C15—H15A109.5
C3—C2—N21119.91 (14)C14—C15—H15B109.5
C1—C2—N21119.48 (14)H15A—C15—H15B109.5
C2—C3—C4119.80 (15)C14—C15—H15C109.5
C2—C3—H3120.1H15A—C15—H15C109.5
C4—C3—H3120.1H15B—C15—H15C109.5
C5—C4—C3119.94 (15)C21—N21—C2123.85 (14)
C5—C4—H4120.0C21—N21—H21116.0 (13)
C3—C4—H4120.0C2—N21—H21120.1 (13)
C4—C5—C6120.74 (15)N21—C21—N22115.68 (14)
C4—C5—H5119.6N21—C21—S2125.81 (12)
C6—C5—H5119.6N22—C21—S2118.52 (12)
C5—C6—C1119.45 (15)C22—N22—C21128.97 (14)
C5—C6—H6120.3C22—N22—H22117.5 (13)
C1—C6—H6120.3C21—N22—H22113.1 (13)
C11—N11—C1127.91 (14)O2—C22—N22122.64 (14)
C11—N11—H11114.1 (12)O2—C22—C23122.56 (15)
C1—N11—H11117.4 (13)N22—C22—C23114.77 (14)
N11—C11—N12114.78 (14)C22—C23—C24110.15 (14)
N11—C11—S1127.73 (12)C22—C23—H23A109.6
N12—C11—S1117.49 (11)C24—C23—H23A109.6
C12—N12—C11128.39 (14)C22—C23—H23B109.6
C12—N12—H12115.2 (13)C24—C23—H23B109.6
C11—N12—H12116.3 (13)H23A—C23—H23B108.1
O1—C12—N12122.84 (14)C25—C24—C23111.58 (16)
O1—C12—C13122.44 (15)C25—C24—H24A109.3
N12—C12—C13114.71 (14)C23—C24—H24A109.3
C12—C13—C14112.57 (15)C25—C24—H24B109.3
C12—C13—H13A109.1C23—C24—H24B109.3
C14—C13—H13A109.1H24A—C24—H24B108.0
C12—C13—H13B109.1C24—C25—H25A109.5
C14—C13—H13B109.1C24—C25—H25B109.5
H13A—C13—H13B107.8H25A—C25—H25B109.5
C15—C14—C13113.35 (16)C24—C25—H25C109.5
C15—C14—H14A108.9H25A—C25—H25C109.5
C13—C14—H14A108.9H25B—C25—H25C109.5
C6—C1—C2—C3−1.7 (2)C11—N12—C12—O1−2.4 (3)
N11—C1—C2—C3173.81 (15)C11—N12—C12—C13178.22 (16)
C6—C1—C2—N21−177.47 (14)O1—C12—C13—C1431.9 (2)
N11—C1—C2—N21−2.0 (2)N12—C12—C13—C14−148.67 (15)
C1—C2—C3—C41.9 (2)C12—C13—C14—C1567.2 (2)
N21—C2—C3—C4177.67 (15)C3—C2—N21—C21113.70 (18)
C2—C3—C4—C5−0.8 (3)C1—C2—N21—C21−70.5 (2)
C3—C4—C5—C6−0.4 (3)C2—N21—C21—N22173.38 (14)
C4—C5—C6—C10.6 (2)C2—N21—C21—S2−6.7 (2)
C2—C1—C6—C50.4 (2)N21—C21—N22—C226.5 (2)
N11—C1—C6—C5−174.83 (15)S2—C21—N22—C22−173.42 (13)
C6—C1—N11—C11−49.1 (2)C21—N22—C22—O21.0 (3)
C2—C1—N11—C11135.57 (16)C21—N22—C22—C23−177.18 (15)
C1—N11—C11—N12−174.00 (14)O2—C22—C23—C24−61.4 (2)
C1—N11—C11—S15.6 (2)N22—C22—C23—C24116.77 (17)
N11—C11—N12—C126.0 (2)C22—C23—C24—C25−176.8 (2)
S1—C11—N12—C12−173.65 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N11—H11···O10.86 (2)1.90 (2)2.6336 (17)142.6 (17)
N12—H12···O2i0.84 (2)2.19 (2)3.0309 (18)175.3 (19)
N21—H21···O20.83 (2)1.98 (2)2.6616 (18)139.1 (18)
N22—H22···S1ii0.87 (2)2.75 (2)3.6147 (14)172.0 (17)

Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2318).

References

  • Atia, A. A. (2005). Hydrometallurgy, 80, 98–106.
  • Berkessel, A., Roland, K. & Neudorfl, J. M. (2006). Org. Lett.8, 4195–4198. [PubMed]
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Hu, C., He, Y., Chen, Z. & Huang, X. (2009). Tetrahedron Asymmetry, 20, 98–106.
  • Moloto, M. L. & Revaprasadu, N. (2004). J. Mater. Sci.15, 313–316.
  • Phetsuksiri, B., Jackson, M., Scherman, H., McNeil, M., Besra, G. S., Baulard, A. R., Slayden, R. A., DeBarber, A. E., Barry, C. E., Baird, M. S., Crick, D. C. & Brennan, P. J. (2003). J. Biol. Chem.278, 53123–53130. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  • Succaw, G. L., Weakley, T. J. R., Han, H. & Doxsee, K. M. (2005). Cryst. Growth Des.5, 2288–2298.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography