PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m206–m207.
Published online 2010 January 27. doi:  10.1107/S1600536810002497
PMCID: PMC2979830

Dimethyl­ammonium diaqua­(pyridine-2,4-dicarboxyl­ato-κ2 N,O 2)cuprate(II)

Abstract

The asymmetric unit of the title compound, (C2H8N)2[Cu(C7H3NO4)2(H2O)2], contains one-half of a mononuclear [Cu(C7H3NO4)2(H2O)2]2− anion, one dimethyl­ammonium cation and one aqua ligand. The CuII atom, lying on an inversion center, is coordinated by two symmetry-related N atoms and two O atoms from one pyridine-2,4-dicarboxyl­ate ligand and two symmetry-related aqua ligands and exhibits a distorted octa­hedral trans-[CuN2O4] coordination geometry. Multiple crystallographically independent O—H(...)O and N—H(...)O hydrogen bonds form a three-dimensional network in the crystal structure.

Related literature

For the structural diversity and potential applications of coordination polymers constructed from metal ions and bridging ligands, see: Eddaoudi et al. (2001 [triangle]); Kitagawa et al. (2004 [triangle]). For general background to metal complexes of pyridine-2,4-dicarboxyl­ates, see: Mahata & Natarajan (2005 [triangle]); Bai et al. (2008 [triangle]); Chen & Beatty (2008 [triangle]). For similar structures, see: Zou et al. (2008 [triangle]); Noro et al. (2005 [triangle]). For comparative bond lengths and angles, see: Chutia et al. (2009 [triangle]); Klein et al. (1982 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m206-scheme1.jpg

Experimental

Crystal data

  • (C2H8N)2[Cu(C7H3NO4)2(H2O)2]
  • M r = 521.98
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m206-efi1.jpg
  • a = 7.9854 (7) Å
  • b = 9.4648 (8) Å
  • c = 14.9380 (12) Å
  • β = 103.540 (1)°
  • V = 1097.64 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.06 mm−1
  • T = 293 K
  • 0.31 × 0.16 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.732, T max = 0.849
  • 5508 measured reflections
  • 2160 independent reflections
  • 1992 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.079
  • S = 1.06
  • 2160 reflections
  • 159 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002497/bx2257sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002497/bx2257Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Coordination polymers constructed from metal ions and bridging ligands have been of great interest due to their structural diversity and many potential applications (Eddaoudi et al., 2001; Kitagawa et al., 2004). Pyridinedicarboxylates(pydc) have been extensively studied as excellent bridging ligands in the area of metal-organic frameworks (Mahata et al., 2005; Bai et al. 2008; Chen et al. 2008). Herein we report the crystal structure of the title compound [Cu(2,4-pydc)2(H2O)2][NH2(CH3)2]2, (2,4-pydc= pyridine-2,4-dicarboxylate) .The CuII atom, lying on an inversion center, is coordinated by two symmetry-related N atoms and two O atoms from one pyridine-2,4-dicarboxylate ligand and two symmetry-related aqua ligands and exhibits a distorted octahedral trans-[ CuN2O4] coordination geometry (Table 1 and Fig. 1). The bond lengths and angles are all in normal ranges (Chutia et al., 2009; Klein et al., 1982). Multiple crystallographically independent hydrogen bonds form a three-dimensional network in the crystal structure, Table 2.

Experimental

A solution of Cu(NO3)2.3H2O (0.024 g, 0.1 mmol) in H2O (3 ml) was added to a suspending solution of 2,4-pydc (0.017 g, 0.1 mmol) in H2O and DMF(1:1, 7 ml). The mixture was stirred for 30 minutes and sealed in a 15 ml Teflon-lined stainless steel autoclave and heated at 423 K for 3 d under autogenous pressure. When cooled to room temperature, green block crystals of the title compound were obtained (yield 0.045 g, 86% based on Cu).

Refinement

H atoms of the pyridine ring were positioned geometrically and refined as riding atoms, with C—H = 0.93-0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(C) for CH3 group. H atoms of water molecule were located in a difference Fourier map and refined as riding, with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x, 1 - y, 2 - z.]

Crystal data

(C2H8N)2[Cu(C7H3NO4)2(H2O)2]F(000) = 542
Mr = 521.98Dx = 1.579 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3343 reflections
a = 7.9854 (7) Åθ = 2.6–26.0°
b = 9.4648 (8) ŵ = 1.06 mm1
c = 14.9380 (12) ÅT = 293 K
β = 103.540 (1)°Block, green
V = 1097.64 (16) Å30.31 × 0.16 × 0.16 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer2160 independent reflections
Radiation source: sealed tube1992 reflections with I > 2σ(I)
graphiteRint = 0.016
[var phi] and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.732, Tmax = 0.849k = −7→11
5508 measured reflectionsl = −12→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0456P)2 + 0.427P] where P = (Fo2 + 2Fc2)/3
2160 reflections(Δ/σ)max = 0.001
159 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = −0.26 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.00000.50001.00000.02668 (12)
N10.15726 (18)0.55054 (15)0.92027 (9)0.0235 (3)
N20.7815 (2)0.47684 (16)0.59707 (11)0.0302 (3)
H2A0.69570.46700.62640.036*
H2B0.80780.39040.57930.036*
O10.15272 (15)0.33417 (12)1.02961 (8)0.0291 (3)
O20.38987 (16)0.24074 (13)0.99920 (9)0.0337 (3)
O30.57116 (18)0.46822 (17)0.72146 (10)0.0393 (3)
O40.4794 (2)0.68865 (19)0.68723 (12)0.0618 (5)
O1W0.18306 (19)0.62993 (16)1.12457 (10)0.0400 (3)
H1WA0.126 (3)0.687 (2)1.1473 (16)0.048*
H1WB0.250 (2)0.594 (2)1.1680 (12)0.048*
C10.2761 (2)0.33162 (18)0.98819 (11)0.0253 (3)
C20.2792 (2)0.45160 (18)0.92182 (11)0.0223 (3)
C30.3928 (2)0.45788 (18)0.86496 (11)0.0234 (3)
H30.47550.38800.86740.028*
C40.3812 (2)0.57093 (18)0.80377 (11)0.0249 (3)
C50.2608 (2)0.67552 (18)0.80637 (11)0.0277 (4)
H50.25450.75490.76900.033*
C60.1501 (2)0.66179 (18)0.86455 (11)0.0269 (4)
H60.06860.73190.86490.032*
C70.4887 (2)0.5772 (2)0.73205 (12)0.0337 (4)
C80.9339 (3)0.5361 (3)0.66186 (15)0.0414 (5)
H8A1.02420.55130.63030.062*
H8B0.97280.47120.71180.062*
H8C0.90370.62440.68560.062*
C90.7204 (3)0.5659 (2)0.51421 (13)0.0409 (5)
H9A0.66530.64900.53060.061*
H9B0.63960.51340.46860.061*
H9C0.81660.59310.48980.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.03408 (19)0.02407 (18)0.02744 (19)0.00826 (11)0.01843 (13)0.00608 (11)
N10.0288 (7)0.0230 (7)0.0207 (6)0.0025 (6)0.0095 (5)0.0003 (6)
N20.0352 (8)0.0289 (8)0.0295 (8)−0.0024 (6)0.0136 (7)−0.0061 (6)
O10.0363 (7)0.0269 (6)0.0297 (6)0.0071 (5)0.0190 (5)0.0078 (5)
O20.0357 (7)0.0289 (7)0.0411 (7)0.0097 (5)0.0183 (6)0.0119 (6)
O30.0368 (7)0.0531 (8)0.0329 (7)0.0035 (6)0.0183 (6)0.0039 (6)
O40.0617 (10)0.0642 (11)0.0720 (11)0.0089 (8)0.0411 (9)0.0378 (9)
O1W0.0444 (8)0.0413 (8)0.0345 (7)0.0109 (6)0.0095 (6)−0.0020 (6)
C10.0304 (8)0.0230 (8)0.0242 (8)0.0016 (7)0.0097 (7)0.0016 (6)
C20.0258 (8)0.0208 (8)0.0209 (7)−0.0009 (6)0.0070 (6)−0.0010 (6)
C30.0236 (8)0.0235 (8)0.0240 (8)0.0001 (6)0.0074 (6)−0.0001 (7)
C40.0245 (8)0.0276 (9)0.0228 (8)−0.0058 (6)0.0062 (6)0.0009 (7)
C50.0333 (9)0.0245 (9)0.0250 (8)−0.0027 (7)0.0063 (7)0.0059 (7)
C60.0320 (8)0.0231 (8)0.0260 (8)0.0043 (7)0.0079 (7)0.0026 (7)
C70.0277 (9)0.0459 (12)0.0287 (9)−0.0047 (8)0.0090 (7)0.0085 (8)
C80.0349 (10)0.0507 (12)0.0376 (11)−0.0059 (9)0.0066 (8)−0.0036 (10)
C90.0472 (11)0.0445 (12)0.0319 (10)0.0041 (9)0.0110 (8)0.0005 (9)

Geometric parameters (Å, °)

Cu1—O11.9733 (11)O1W—H1WB0.815 (10)
Cu1—O1i1.9733 (11)C1—C21.512 (2)
Cu1—N1i1.9810 (14)C2—C31.381 (2)
Cu1—N11.9810 (14)C3—C41.396 (2)
Cu1—O1Wi2.4162 (15)C3—H30.9300
Cu1—O1W2.4162 (15)C4—C51.387 (2)
N1—C61.335 (2)C4—C71.523 (2)
N1—C21.347 (2)C5—C61.383 (2)
N2—C81.477 (3)C5—H50.9300
N2—C91.483 (3)C6—H60.9300
N2—H2A0.9000C8—H8A0.9600
N2—H2B0.9000C8—H8B0.9600
O1—C11.281 (2)C8—H8C0.9600
O2—C11.234 (2)C9—H9A0.9600
O3—C71.253 (2)C9—H9B0.9600
O4—C71.242 (2)C9—H9C0.9600
O1W—H1WA0.832 (10)
O1—Cu1—O1i179.998 (1)N1—C2—C3122.38 (15)
O1—Cu1—N1i96.81 (5)N1—C2—C1114.25 (14)
O1i—Cu1—N1i83.18 (5)C3—C2—C1123.33 (15)
O1—Cu1—N183.19 (5)C2—C3—C4118.89 (16)
O1i—Cu1—N196.81 (5)C2—C3—H3120.6
N1i—Cu1—N1180.00 (5)C4—C3—H3120.6
O1—Cu1—O1Wi89.92 (5)C5—C4—C3117.97 (15)
O1i—Cu1—O1Wi90.08 (5)C5—C4—C7120.04 (15)
N1i—Cu1—O1Wi89.18 (5)C3—C4—C7121.90 (16)
N1—Cu1—O1Wi90.82 (5)C6—C5—C4119.98 (15)
O1—Cu1—O1W90.08 (5)C6—C5—H5120.0
O1i—Cu1—O1W89.91 (5)C4—C5—H5120.0
N1i—Cu1—O1W90.82 (5)N1—C6—C5121.69 (15)
N1—Cu1—O1W89.18 (5)N1—C6—H6119.2
O1Wi—Cu1—O1W180.00 (5)C5—C6—H6119.2
C6—N1—C2118.96 (14)O4—C7—O3126.71 (18)
C6—N1—Cu1128.65 (12)O4—C7—C4116.09 (18)
C2—N1—Cu1112.29 (11)O3—C7—C4117.13 (16)
C8—N2—C9113.01 (16)N2—C8—H8A109.5
C8—N2—H2A109.0N2—C8—H8B109.5
C9—N2—H2A109.0H8A—C8—H8B109.5
C8—N2—H2B109.0N2—C8—H8C109.5
C9—N2—H2B109.0H8A—C8—H8C109.5
H2A—N2—H2B107.8H8B—C8—H8C109.5
C1—O1—Cu1114.32 (10)N2—C9—H9A109.5
Cu1—O1W—H1WA110.7 (17)N2—C9—H9B109.5
Cu1—O1W—H1WB124.4 (18)H9A—C9—H9B109.5
H1WA—O1W—H1WB106 (2)N2—C9—H9C109.5
O2—C1—O1125.07 (15)H9A—C9—H9C109.5
O2—C1—C2119.13 (14)H9B—C9—H9C109.5
O1—C1—C2115.80 (14)

Symmetry codes: (i) −x, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4ii0.83 (2)1.85 (2)2.680 (2)174
O1W—H1Wb···O3iii0.812 (18)2.002 (17)2.809 (2)172
N2—H2A···O30.901.922.783 (2)161
N2—H2B···O2iv0.901.942.778 (2)154

Symmetry codes: (ii) x−1/2, −y+3/2, z+1/2; (iii) −x+1, −y+1, −z+2; (iv) x+1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2257).

References

  • Bai, Z.-S., Xu, J., Su, Z. & Sun, W.-Y. (2008). Inorg. Chem. Commun.11, 1227–1230.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, C.-L. & Beatty, A. M. (2008). J. Am. Chem. Soc.130, 17222–17223. [PubMed]
  • Chutia, P., Kato, S., Kojima, T. & Satokawa, S. (2009). Polyhedron, 28 , 370–380.
  • Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res.34, 319–330. [PubMed]
  • Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed.43, 2334–2375. [PubMed]
  • Klein, C. L., Majeste, R. J., Trefonas, L. M. & O’Connor, C. J. (1982). Inorg. Chem.21, 1891–1897.
  • Mahata, P. & Natarajan, S. (2005). Eur. J. Inorg. Chem. pp. 2156–2163.
  • Noro, S., Miyasaka, H., Kitagawa, S., Wada, T., Okubo, T., Yamashita, M. & Mitani, T. (2005). Inorg. Chem.44, 133–146. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zou, R.-Q., Zhong, R.-Q., Du, M., Dandey, D. S. & Xu, Q. (2008). Cryst. Growth Des.8, 452–459.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography