PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m149–m150.
Published online 2010 January 13. doi:  10.1107/S1600536810000711
PMCID: PMC2979829

Poly[[di-μ-aqua-(μ-4-formyl-2-meth­oxy­phenol­ato)disodium] 4-formyl-2-meth­oxy­phenolate]

Abstract

In the title coordination polymer, {[Na2(C8H7O3)(H2O)4](C8H7O3)}n, all the non-H atoms except the water O atoms lie on a crystallographic mirror plane. One sodium cation is bonded to four water O atoms and one vanillinate O atom in a distorted square-based pyramidal arrangement; the other Na+ ion is six-coordinated by four water O atoms and two vanillinate O atoms in an irregular geometry. One of the vanillinate anions is directly bonded to two sodium ions, whilst the other only inter­acts with the polymeric network by way of hydrogen bonds. In the crystal, a two-dimensional polymeric array is formed; this is reinforced by O—H(...)O hydrogen bonds, which generate R 2 1(6) and R 2 2(20) loops.

Related literature

For related crystal structures, see: Velavan et al. (1995 [triangle]); Iwasaki (1973 [triangle]); Iwasaki et al. (1976 [triangle]); Usman et al. (2002 [triangle]); Li et al. (1999 [triangle]); Kaduk (2000 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m149-scheme1.jpg

Experimental

Crystal data

  • [Na2(C8H7O3)(H2O)4](C8H7O3)
  • M r = 420.32
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m149-efi15.jpg
  • a = 12.2281 (6) Å
  • b = 6.7681 (3) Å
  • c = 22.6734 (10) Å
  • V = 1876.47 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 296 K
  • 0.42 × 0.33 × 0.24 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.938, T max = 0.962
  • 10469 measured reflections
  • 2121 independent reflections
  • 1825 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.119
  • S = 1.07
  • 2121 reflections
  • 180 parameters
  • 12 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810000711/hb5277sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000711/hb5277Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission of Pakistan for the purchase of diffractometer under the grant of Strengthning of the Materials Chemistry Laboratory at GC University, Lahore, Pakistan.

supplementary crystallographic information

Comment

The crystal structures of vanillin-I (Velavan et al., 1995), the polymorphic forms of isovanillin (Iwasaki, 1973), o-vanillin (Iwasaki et al., 1976) and other vanillin derivatives (Usman et al., 2002; Li et al., 1999) have been reported. We now report the title compound, (I).

The basic polymeric fragment of (I), with asymmetric unit formula [Na2(H2O)2(C8H7O3)2]n, is illustrated in Fig. 1. The Na+ cations are of two coordination types. In the first of these coordination, the Na1 coordination by four O atoms from two equivalent water molecules (O1, O2, O1iv and O2iv) and the bonded carboxylate O atom from vanillin ligand (O6) (Table 1). In the second coordination, cation Na2 is coordinated by four O atoms from two equivalent water molecules (O1, O2, O1vii and O2vii) and two O atoms from vanillin ligand (O7vi and O8vi) [symmetry codes: (iv) x, 1/2 - y, z; (vi) 3/2 - x, -y, 1/2 + z; (vii) x, -1/2 - y, z]. The vanillin ligand five-membered (O7vi/C11vi/C12vi/O8vi/Na2) chelates to the Na atom through the methoxy and hydroxy groups. Two adjacent Na+ cations are linked together by two H2O bridges to form a four-membered ring with an Na2O2 core. The Na1···Na2 separation is 3.7595 (8) Å. Adjacent Na2O2 binuclear motifs are further joined by the vanillin ligand through carboxyl atoms O6, O7 and O8, to produce a one-dimensional chain along the c axis, with an Na1···Na2ii separation of 9.890Å [symmetry code: (ii) 3/2 - x, 1 - y, z - 1/2]; this compares with the corresponding Na···Na distance of 8.006 (3)Å in the three-dimensional Na-terephthalate polymer [Na2(C8H4O4)] (Kaduk, 2000). These chains are connected by the water O atoms [Na1···Na2v = 3.7595 (8) Å; symmetry code: (v) x, 1 + y, z], generating a two-dimensional layer architecture in the crystallographic bc plane (Fig. 2).

Water atom O1 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H1B, to atom O8i so forming a C(10)[R22(20)] (Bernstein et al., 1995) chain of rings running parallel to the [0–10] direction and centrosymmetric R22(20) rings centred at (1/2, 1/2+n/2, 1/2) (n = zero or integer). The combination of O1—H1B···O8i and O1ix—H1Bix···O8i hydrogen bonds produce R21(6) ring (Fig. 3). Water atom O2 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H2A, to atom O4ii, while O1ii acts as donor to O5ii, and in this manner a C22(12) chain running parallel to the [00–1] direction. The combination of O2—H2A···O4ii, O1ii—H1Aii···O5ii and O2ix—H2Aix···O4ii hydrogen bonds produce R21(6) and R22(20) rings (Fig. 4).

Experimental

Sodium hydroxide (0.66 g, 0.0165 mmol) was dissolved in a mixture of distilled water (10 ml) and ethanol (8 ml). The solution was cooled to room temperature. Half of the mixture of vanillin (1 g, 0.00658 mmol) and acetone (0.19 g, 0.00329 mmol) added to the above solution and stirred at room temperature for 15 minute then the remaining mixture was added and stirred for 2 h under the same conditions. The greenish-yellow precipitate obtained was filtered and recystalized from methanol to yield colourless blocks of (I).

Refinement

All H atoms bound to C atoms were refined using a riding model, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic C, and C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl C atoms. Water H atom was located in difference maps and refined subject to a restraint of O—H = 0.83 (2) Å.

Figures

Fig. 1.
A view of the asymmetric unit of (I), showing displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are indicated by dashed lines.
Fig. 2.
View of part of the crystal structure of compound (I), showing the formation of a coordination polymer chain parallel to the bc plane. For the sake of clarity, the noncoordinated molecule and all H atoms have been omitted. [Symmetry codes: (ii) 3/2 - ...
Fig. 3.
Part of the crystal structure of (I), showing the formation of R21(6) and R22(20) rings. For the sake of clarity, the noncoordinated molecule and H atoms have been omitted. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ix) x, 1/2 - y, z.]
Fig. 4.
Part of the crystal structure of (I), showing the formation of R21(6) and R22(20) rings. H atoms not involved in these interactions have been omitted for clarity. [Symmetry codes: (ii) 3/2 - x, 1 - y, z - 1/2; (ix) x, 1/2 - y, z.]

Crystal data

[Na2(C8H7O3)(H2O)4](C8H7O3)F(000) = 880
Mr = 420.32Dx = 1.488 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 5113 reflections
a = 12.2281 (6) Åθ = 3.0–31.1°
b = 6.7681 (3) ŵ = 0.16 mm1
c = 22.6734 (10) ÅT = 296 K
V = 1876.47 (15) Å3Block, colourles
Z = 40.42 × 0.33 × 0.24 mm

Data collection

Bruker APEXII CCD diffractometer2121 independent reflections
Radiation source: fine-focus sealed tube1825 reflections with I > 2σ(I)
graphiteRint = 0.020
phi and ω scansθmax = 26.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −15→15
Tmin = 0.938, Tmax = 0.962k = −8→4
10469 measured reflectionsl = −19→28

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119w = 1/[σ2(Fo2) + (0.0476P)2 + 1.7283P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2121 reflectionsΔρmax = 0.63 e Å3
180 parametersΔρmin = −0.67 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0138 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.6494 (2)0.75000.97772 (12)0.0327 (7)
C20.7164 (2)0.75000.92725 (13)0.0321 (7)
H20.79200.75000.93150.039*
C30.6713 (2)0.75000.87213 (12)0.0263 (6)
C40.5554 (2)0.75000.86488 (12)0.0260 (6)
C50.4908 (2)0.75000.91595 (13)0.0317 (7)
H50.41510.75000.91230.038*
C60.5368 (2)0.75000.97117 (13)0.0331 (7)
H60.49210.75001.00440.040*
C70.6978 (3)0.75001.03533 (14)0.0505 (10)
H70.77380.75001.03700.061*
C80.8444 (2)0.75000.82464 (14)0.0345 (7)
H8A0.87570.72140.78680.052*0.50
H8B0.86690.65120.85250.052*0.50
H8C0.86890.87740.83770.052*0.50
C90.6086 (3)0.75000.49146 (15)0.0582 (12)
C100.7012 (2)0.75000.45577 (13)0.0318 (7)
H100.77040.75000.47280.038*
C110.6907 (2)0.75000.39567 (12)0.0258 (6)
C120.5862 (2)0.75000.36734 (13)0.0336 (7)
C130.4958 (3)0.75000.40446 (17)0.092 (2)
H130.42600.75000.38820.111*
C140.5076 (3)0.75000.46474 (18)0.099 (2)
H140.44520.75000.48820.118*
C150.6143 (3)0.75000.55467 (17)0.0725 (15)
H150.54770.75000.57450.087*
C160.8841 (2)0.75000.38079 (14)0.0364 (7)
H16A0.89620.87100.40190.055*0.50
H16B0.93640.73890.34940.055*0.50
H16C0.89220.64010.40720.055*0.50
O10.59561 (12)0.4859 (3)0.73010 (7)0.0386 (4)
H1A0.5721 (19)0.552 (4)0.7574 (10)0.047 (8)*
H1B0.5423 (18)0.426 (4)0.7162 (11)0.060 (9)*
O20.83431 (12)0.4956 (3)0.68524 (7)0.0353 (4)
H2A0.835 (2)0.439 (4)0.6534 (9)0.047 (8)*
H2B0.8935 (17)0.557 (4)0.6870 (11)0.051 (8)*
O30.72906 (16)0.75000.82013 (9)0.0352 (5)
O40.6492 (2)0.75001.08231 (10)0.0528 (7)
O50.51190 (16)0.75000.81191 (8)0.0319 (5)
O60.6945 (2)0.75000.58503 (11)0.0611 (8)
O70.77607 (16)0.75000.35679 (9)0.0367 (5)
O80.57840 (16)0.75000.31048 (8)0.0325 (5)
Na10.69720 (10)0.75000.68819 (5)0.0353 (3)
Na20.75745 (10)0.25000.75268 (5)0.0343 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0341 (15)0.0405 (18)0.0234 (14)0.000−0.0004 (11)0.000
C20.0253 (13)0.0429 (18)0.0282 (14)0.000−0.0014 (11)0.000
C30.0260 (13)0.0284 (15)0.0245 (13)0.0000.0031 (10)0.000
C40.0265 (13)0.0271 (15)0.0245 (13)0.000−0.0018 (10)0.000
C50.0241 (13)0.0400 (17)0.0309 (15)0.0000.0014 (11)0.000
C60.0322 (14)0.0404 (18)0.0268 (14)0.0000.0053 (11)0.000
C70.0400 (17)0.084 (3)0.0279 (16)0.000−0.0038 (13)0.000
C80.0274 (14)0.0409 (18)0.0352 (16)0.0000.0065 (12)0.000
C90.0366 (17)0.110 (4)0.0276 (17)0.0000.0020 (13)0.000
C100.0299 (14)0.0375 (17)0.0281 (14)0.000−0.0045 (11)0.000
C110.0268 (13)0.0240 (14)0.0267 (13)0.0000.0007 (10)0.000
C120.0295 (14)0.0457 (19)0.0256 (14)0.000−0.0029 (11)0.000
C130.0249 (16)0.219 (7)0.0333 (18)0.000−0.0012 (14)0.000
C140.0368 (19)0.218 (6)0.041 (2)0.0000.0087 (17)0.000
C150.047 (2)0.138 (5)0.0322 (19)0.0000.0065 (16)0.000
C160.0245 (13)0.0486 (19)0.0363 (16)0.000−0.0056 (12)0.000
O10.0325 (8)0.0420 (10)0.0413 (9)−0.0063 (7)0.0053 (7)−0.0109 (8)
O20.0347 (8)0.0402 (9)0.0311 (8)−0.0032 (7)0.0039 (6)−0.0014 (7)
O30.0256 (10)0.0557 (15)0.0243 (10)0.0000.0028 (8)0.000
O40.0623 (16)0.0727 (19)0.0233 (11)0.000−0.0007 (10)0.000
O50.0266 (9)0.0442 (13)0.0249 (10)0.000−0.0030 (8)0.000
O60.0559 (16)0.099 (2)0.0287 (12)0.000−0.0051 (11)0.000
O70.0243 (10)0.0597 (15)0.0262 (10)0.000−0.0024 (8)0.000
O80.0291 (10)0.0442 (13)0.0242 (10)0.000−0.0039 (8)0.000
Na10.0336 (6)0.0352 (7)0.0371 (7)0.0000.0020 (5)0.000
Na20.0337 (6)0.0422 (7)0.0272 (6)0.0000.0001 (5)0.000

Geometric parameters (Å, °)

C1—C61.385 (4)C12—C131.390 (5)
C1—C21.407 (4)C13—C141.374 (6)
C1—C71.434 (4)C13—H130.9300
C2—C31.366 (4)C14—H140.9300
C2—H20.9300C15—O61.198 (5)
C3—O31.374 (3)C15—H150.9300
C3—C41.427 (4)C16—O71.428 (3)
C4—O51.314 (3)C16—H16A0.9600
C4—C51.402 (4)C16—H16B0.9600
C5—C61.372 (4)C16—H16C0.9600
C5—H50.9300O1—H1A0.817 (17)
C6—H60.9300O1—H1B0.830 (17)
C7—O41.220 (4)O2—H2A0.816 (17)
C7—H70.9300O2—H2B0.836 (17)
C8—O31.414 (3)Na1—O12.3751 (18)
C8—H8A0.9600Na1—O22.4043 (18)
C8—H8B0.9600Na1—O62.339 (3)
C8—H8C0.9600Na1—O1i2.3751 (18)
C9—C141.376 (5)Na1—O2i2.4043 (18)
C9—C101.391 (4)Na2—O12.5938 (19)
C9—C151.435 (5)Na2—O22.4462 (18)
C10—C111.369 (4)Na2—O2ii2.4462 (18)
C10—H100.9300Na2—O1ii2.5938 (19)
C11—O71.366 (3)Na2—O7iii2.396 (2)
C11—C121.430 (4)Na2—O8iii2.397 (2)
C12—O81.293 (3)
C6—C1—C2119.4 (3)H16A—C16—H16C109.5
C6—C1—C7120.6 (3)H16B—C16—H16C109.5
C2—C1—C7120.0 (3)Na1—O1—Na298.23 (6)
C3—C2—C1120.6 (3)Na1—O1—H1A94.3 (19)
C3—C2—H2119.7Na2—O1—H1A117.2 (19)
C1—C2—H2119.7Na1—O1—H1B129 (2)
C2—C3—O3125.3 (2)Na2—O1—H1B112 (2)
C2—C3—C4120.4 (2)H1A—O1—H1B106 (2)
O3—C3—C4114.3 (2)Na1—O2—Na2101.61 (6)
O5—C4—C5121.8 (2)Na1—O2—H2A111.6 (19)
O5—C4—C3120.5 (2)Na2—O2—H2A104.0 (19)
C5—C4—C3117.7 (2)Na1—O2—H2B104.2 (19)
C6—C5—C4121.5 (3)Na2—O2—H2B129.9 (19)
C6—C5—H5119.2H2A—O2—H2B105 (2)
C4—C5—H5119.2C3—O3—C8116.8 (2)
C5—C6—C1120.3 (3)C3—O3—Na1141.66 (16)
C5—C6—H6119.8C8—O3—Na1101.57 (16)
C1—C6—H6119.8C15—O6—Na1125.9 (3)
O4—C7—C1126.4 (3)C11—O7—C16117.4 (2)
O4—C7—H7116.8C11—O7—Na2iv120.33 (16)
C1—C7—H7116.8C16—O7—Na2iv122.24 (17)
O3—C8—H8A109.5C12—O8—Na2iv118.88 (18)
O3—C8—H8B109.5O6—Na1—O1i113.13 (7)
H8A—C8—H8B109.5O6—Na1—O1113.13 (7)
O3—C8—H8C109.5O1i—Na1—O197.63 (9)
H8A—C8—H8C109.5O6—Na1—O2i88.96 (7)
H8B—C8—H8C109.5O1i—Na1—O2i80.61 (6)
C14—C9—C10118.3 (3)O1—Na1—O2i156.19 (8)
C14—C9—C15118.9 (4)O6—Na1—O288.96 (7)
C10—C9—C15122.8 (3)O1i—Na1—O2156.19 (8)
C11—C10—C9120.2 (3)O1—Na1—O280.61 (5)
C11—C10—H10119.9O2i—Na1—O291.48 (9)
C9—C10—H10119.9O6—Na1—O3173.38 (9)
O7—C11—C10124.8 (3)O1i—Na1—O370.78 (5)
O7—C11—C12113.1 (2)O1—Na1—O370.78 (5)
C10—C11—C12122.1 (3)O2i—Na1—O386.42 (5)
O8—C12—C13123.0 (3)O2—Na1—O386.42 (5)
O8—C12—C11120.9 (3)O7iii—Na2—O8iii66.71 (7)
C13—C12—C11116.0 (3)O7iii—Na2—O2ii132.97 (5)
C14—C13—C12121.3 (3)O8iii—Na2—O2ii91.15 (6)
C14—C13—H13119.4O7iii—Na2—O2132.97 (5)
C12—C13—H13119.4O8iii—Na2—O291.15 (6)
C13—C14—C9122.1 (4)O2ii—Na2—O285.60 (9)
C13—C14—H14118.9O7iii—Na2—O1ii93.66 (6)
C9—C14—H14118.9O8iii—Na2—O1ii138.31 (5)
O6—C15—C9127.8 (4)O2ii—Na2—O1ii75.61 (6)
O6—C15—H15116.1O2—Na2—O1ii126.01 (7)
C9—C15—H15116.1O7iii—Na2—O193.66 (6)
O7—C16—H16A109.5O8iii—Na2—O1138.31 (5)
O7—C16—H16B109.5O2ii—Na2—O1126.01 (7)
H16A—C16—H16B109.5O2—Na2—O175.61 (5)
O7—C16—H16C109.5O1ii—Na2—O175.98 (8)
C6—C1—C2—C30.000 (2)C10—C11—O7—Na2iv180.0
C7—C1—C2—C3180.000 (1)C12—C11—O7—Na2iv0.0
C1—C2—C3—O3180.000 (1)C13—C12—O8—Na2iv180.0
C1—C2—C3—C40.000 (1)C11—C12—O8—Na2iv0.0
C2—C3—C4—O5180.000 (1)C15—O6—Na1—O1i−54.92 (6)
O3—C3—C4—O50.000 (1)C15—O6—Na1—O154.92 (6)
C2—C3—C4—C50.000 (1)C15—O6—Na1—O2i−134.25 (4)
O3—C3—C4—C5180.000 (1)C15—O6—Na1—O2134.25 (4)
O5—C4—C5—C6180.000 (1)Na2—O1—Na1—O699.60 (9)
C3—C4—C5—C60.000 (2)Na2—O1—Na1—O1i−141.19 (5)
C4—C5—C6—C10.000 (2)Na2—O1—Na1—O2i−57.16 (18)
C2—C1—C6—C50.000 (2)Na2—O1—Na1—O214.80 (6)
C7—C1—C6—C5180.000 (1)Na2—O1—Na1—O3−74.67 (6)
C6—C1—C7—O40.000 (2)Na2—O2—Na1—O6−129.53 (7)
C2—C1—C7—O4180.000 (2)Na2—O2—Na1—O1i71.75 (18)
C14—C9—C10—C110.0Na2—O2—Na1—O1−15.88 (7)
C15—C9—C10—C11180.0Na2—O2—Na1—O2i141.54 (5)
C9—C10—C11—O7180.0Na2—O2—Na1—O355.22 (6)
C9—C10—C11—C120.0C3—O3—Na1—O1i52.85 (5)
O7—C11—C12—O80.0C8—O3—Na1—O1i−127.15 (5)
C10—C11—C12—O8180.0C3—O3—Na1—O1−52.85 (5)
O7—C11—C12—C13180.0C8—O3—Na1—O1127.15 (5)
C10—C11—C12—C130.0C3—O3—Na1—O2i134.14 (4)
O8—C12—C13—C14180.0C8—O3—Na1—O2i−45.86 (4)
C11—C12—C13—C140.0C3—O3—Na1—O2−134.14 (4)
C12—C13—C14—C90.000 (1)C8—O3—Na1—O245.86 (4)
C10—C9—C14—C130.000 (1)Na1—O2—Na2—O7iii−66.66 (11)
C15—C9—C14—C13180.0Na1—O2—Na2—O8iii−125.21 (6)
C14—C9—C15—O6180.0Na1—O2—Na2—O2ii143.73 (5)
C10—C9—C15—O60.000 (1)Na1—O2—Na2—O1ii75.08 (9)
C2—C3—O3—C80.000 (1)Na1—O2—Na2—O114.79 (6)
C4—C3—O3—C8180.000 (1)Na1—O1—Na2—O7iii118.71 (6)
C2—C3—O3—Na1180.000 (1)Na1—O1—Na2—O8iii60.30 (12)
C4—C3—O3—Na10.000 (1)Na1—O1—Na2—O2ii−88.29 (9)
C9—C15—O6—Na1180.0Na1—O1—Na2—O2−14.81 (6)
C10—C11—O7—C160.0Na1—O1—Na2—O1ii−148.42 (4)
C12—C11—O7—C16180.0

Symmetry codes: (i) x, −y+3/2, z; (ii) x, −y+1/2, z; (iii) −x+3/2, −y+1, z+1/2; (iv) −x+3/2, −y+1, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O50.82 (2)1.97 (2)2.772 (2)169 (3)
O1—H1B···O8v0.83 (2)1.99 (2)2.815 (2)172 (3)
O2—H2A···O4iv0.82 (2)2.07 (2)2.872 (2)168 (3)
O2—H2B···O5vi0.84 (2)1.95 (2)2.772 (2)168 (3)

Symmetry codes: (v) −x+1, −y+1, −z+1; (iv) −x+3/2, −y+1, z−1/2; (vi) x+1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5277).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Iwasaki, F. (1973). Chem. Lett. pp. 227–228.
  • Iwasaki, F., Tanaka, I. & Aihara, A. (1976). Acta Cryst. B32, 1264–1266.
  • Kaduk, J. A. (2000). Acta Cryst. B56, 474–485. [PubMed]
  • Li, S., Lundquist, K. & Stomberg, R. (1999). Acta Cryst. C55, 1012–1014.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Usman, A., Chantrapromma, S., Fun, H.-K., Poh, B.-L. & Karalai, C. (2002). Acta Cryst. C58, o48–o50. [PubMed]
  • Velavan, R., Sureshkumar, P., Sivakumar, K. & Natarajan, S. (1995). Acta Cryst. C51, 1131–1133.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography