PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m111.
Published online 2010 January 9. doi:  10.1107/S1600536809055044
PMCID: PMC2979826

catena-Poly[[(4-amino­benzoato)aqua­silver(I)]-μ-hexa­methyl­enetetramine]

Abstract

In the title coordination polymer, [Ag(C7H6NO2)(C6H12N4)(H2O)]n, the AgI ion is five-coordinated by two carboxyl­ate O atoms from one 4-amino­benzoate anion (L), two N atoms from two different hexa­methyl­enetetramine (hmt) ligands, and one water O atom in a distorted square-pyramidal geometry. The metal atom lies on a mirror plane and the L anion, hmt ligand and water mol­ecule all lie across crystallographic mirror planes. Each hmt ligand bridges two neighboring AgI ions, resulting in the formation of a chain structure along the b axis. The chains are linked into a three-dimensional framework by N—H(...)O and O—H(...)O hydrogen bonds.

Related literature

For the applications and structures of silver(I) coordination polymers, see: Yang et al. (2007 [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m111-scheme1.jpg

Experimental

Crystal data

  • [Ag(C7H6NO2)(C6H12N4)(H2O)]
  • M r = 402.21
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m111-efi3.jpg
  • a = 19.8107 (11) Å
  • b = 6.4877 (3) Å
  • c = 11.3257 (6) Å
  • V = 1455.65 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.41 mm−1
  • T = 293 K
  • 0.31 × 0.27 × 0.22 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.66, T max = 0.87
  • 7757 measured reflections
  • 1557 independent reflections
  • 1373 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.048
  • S = 1.08
  • 1557 reflections
  • 123 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809055044/ci2988sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055044/ci2988Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Harbin Institute of Technology for financial support.

supplementary crystallographic information

Experimental

An aqueous solution (10 ml) of HL (0.104 g, 0.5 mmol) was added to solid Ag2CO3 (0.25 mmol) and stirred for several minutes until no further CO2 was given off. A solution of hmt (0.5 mmol) in acetonitrile (10 ml) was then added and a white precipitate formed. The precipitate was dissolved by dropwise addition of an aqueous solution of NH3 (14 M). Colourless blocks of the title compound were obtained by evaporation of the solution for several days at room temperature (33% yield).

Refinement

Amino and water H-atoms were located in a difference Fourier map, and refined freely. The remaining H atoms were positioned geometrically (C-H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of the local coordination of the AgI centre in the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) x, 3/2 - y, z; (ii) x, 1/2 - y, z.
Fig. 2.
Part of the polymeric chain in the title compound.

Crystal data

[Ag(C7H6NO2)(C6H12N4)(H2O)]F(000) = 816
Mr = 402.21Dx = 1.835 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1557 reflections
a = 19.8107 (11) Åθ = 3.0–26.0°
b = 6.4877 (3) ŵ = 1.41 mm1
c = 11.3257 (6) ÅT = 293 K
V = 1455.65 (13) Å3Block, colourless
Z = 40.31 × 0.27 × 0.22 mm

Data collection

Bruker APEX CCD area-detector diffractometer1557 independent reflections
Radiation source: fine-focus sealed tube1373 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −24→23
Tmin = 0.66, Tmax = 0.87k = −7→7
7757 measured reflectionsl = −13→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0211P)2 + 0.5726P] where P = (Fo2 + 2Fc2)/3
1557 reflections(Δ/σ)max = 0.001
123 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ag10.425226 (10)0.25000.638361 (18)0.02218 (9)
O1W0.54862 (12)0.25000.6362 (2)0.0324 (5)
H1W10.5643 (11)0.352 (4)0.606 (2)0.036 (7)*
O10.38093 (7)0.4203 (2)0.45173 (12)0.0306 (4)
N10.42059 (7)0.5604 (3)0.75114 (14)0.0198 (4)
N20.23019 (13)0.2500−0.0371 (2)0.0261 (6)
H2A0.2075 (11)0.358 (3)−0.0497 (19)0.033 (7)*
N30.47738 (11)0.75000.9101 (2)0.0186 (5)
N40.35383 (11)0.75000.8979 (2)0.0228 (5)
C10.26785 (13)0.25000.0657 (2)0.0182 (6)
C20.28812 (9)0.4347 (3)0.11800 (16)0.0206 (4)
H20.27810.55940.08140.025*
C30.32294 (9)0.4339 (3)0.22365 (16)0.0196 (4)
H30.33570.55850.25760.024*
C40.33924 (13)0.25000.2803 (2)0.0178 (6)
C50.36952 (13)0.25000.4018 (2)0.0222 (6)
C60.35759 (9)0.5670 (3)0.82288 (17)0.0235 (5)
H6A0.31890.56490.77040.028*
H6B0.35540.44480.87210.028*
C70.47854 (9)0.5664 (3)0.83436 (16)0.0214 (4)
H7A0.47760.44400.88360.026*
H7B0.52030.56470.78970.026*
C80.41317 (12)0.75000.9761 (2)0.0223 (6)
H8A0.41150.62921.02640.027*0.50
H8B0.41150.87081.02640.027*0.50
C90.42303 (13)0.75000.6783 (2)0.0200 (6)
H9A0.46420.75000.63210.024*
H9B0.38520.75000.62400.024*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.02328 (13)0.02679 (14)0.01649 (13)0.000−0.00302 (9)0.000
O1W0.0240 (12)0.0378 (15)0.0352 (14)0.0000.0073 (10)0.000
O10.0353 (8)0.0378 (9)0.0187 (7)−0.0053 (8)−0.0049 (6)−0.0054 (7)
N10.0170 (8)0.0292 (10)0.0130 (8)−0.0014 (7)−0.0024 (6)0.0004 (7)
N20.0244 (14)0.0349 (17)0.0189 (13)0.000−0.0072 (11)0.000
N30.0137 (11)0.0288 (14)0.0134 (11)0.0000.0003 (9)0.000
N40.0140 (11)0.0378 (15)0.0165 (12)0.000−0.0014 (9)0.000
C10.0126 (12)0.0283 (15)0.0137 (14)0.0000.0039 (11)0.000
C20.0208 (10)0.0229 (11)0.0179 (10)0.0016 (8)0.0010 (8)0.0035 (8)
C30.0200 (10)0.0210 (11)0.0179 (10)−0.0011 (8)0.0041 (8)−0.0020 (8)
C40.0112 (12)0.0279 (16)0.0143 (13)0.0000.0024 (10)0.000
C50.0145 (13)0.0355 (18)0.0168 (14)0.0000.0022 (11)0.000
C60.0159 (9)0.0355 (13)0.0192 (10)−0.0040 (9)−0.0024 (8)0.0019 (9)
C70.0167 (10)0.0308 (12)0.0167 (10)0.0015 (9)−0.0025 (8)0.0019 (8)
C80.0152 (14)0.0377 (18)0.0139 (14)0.000−0.0018 (11)0.000
C90.0168 (13)0.0301 (17)0.0132 (13)0.000−0.0041 (11)0.000

Geometric parameters (Å, °)

Ag1—N12.3862 (17)C1—C21.396 (2)
Ag1—N1i2.3862 (17)C1—C2i1.396 (2)
Ag1—O1W2.445 (2)C2—C31.381 (3)
Ag1—O12.5413 (14)C2—H20.93
Ag1—O1i2.5413 (14)C3—C41.393 (2)
O1W—H1W10.81 (2)C3—H30.93
O1—C51.2615 (19)C4—C3i1.393 (2)
N1—C91.482 (2)C4—C51.500 (4)
N1—C71.486 (2)C5—O1i1.2615 (19)
N1—C61.490 (2)C6—H6A0.97
N2—C11.383 (4)C6—H6B0.97
N2—H2A0.84 (2)C7—H7A0.97
N3—C71.468 (2)C7—H7B0.97
N3—C7ii1.468 (2)C8—H8A0.97
N3—C81.475 (3)C8—H8B0.97
N4—C61.462 (2)C9—N1ii1.482 (2)
N4—C6ii1.462 (2)C9—H9A0.97
N4—C81.472 (3)C9—H9B0.97
N1—Ag1—N1i115.09 (8)C2—C3—H3119.4
N1—Ag1—O1W92.52 (5)C4—C3—H3119.4
N1i—Ag1—O1W92.52 (5)C3i—C4—C3117.9 (2)
N1—Ag1—O193.74 (5)C3i—C4—C5121.01 (12)
N1i—Ag1—O1143.00 (5)C3—C4—C5121.01 (12)
O1W—Ag1—O1109.69 (6)O1i—C5—O1122.2 (3)
N1—Ag1—O1i143.00 (5)O1i—C5—C4118.87 (13)
N1i—Ag1—O1i93.74 (5)O1—C5—C4118.87 (13)
O1W—Ag1—O1i109.69 (6)N4—C6—N1112.52 (17)
O1—Ag1—O1i51.53 (7)N4—C6—H6A109.1
Ag1—O1W—H1W1112.9 (17)N1—C6—H6A109.1
C5—O1—Ag193.12 (14)N4—C6—H6B109.1
C9—N1—C7107.80 (16)N1—C6—H6B109.1
C9—N1—C6107.87 (17)H6A—C6—H6B107.8
C7—N1—C6107.49 (15)N3—C7—N1112.34 (17)
C9—N1—Ag1113.67 (12)N3—C7—H7A109.1
C7—N1—Ag1109.39 (12)N1—C7—H7A109.1
C6—N1—Ag1110.39 (12)N3—C7—H7B109.1
C1—N2—H2A115.4 (16)N1—C7—H7B109.1
C7—N3—C7ii108.4 (2)H7A—C7—H7B107.9
C7—N3—C8108.02 (14)N4—C8—N3112.6 (2)
C7ii—N3—C8108.02 (14)N4—C8—H8A109.1
C6—N4—C6ii108.6 (2)N3—C8—H8A109.1
C6—N4—C8107.99 (14)N4—C8—H8B109.1
C6ii—N4—C8107.99 (14)N3—C8—H8B109.1
N2—C1—C2120.83 (12)H8A—C8—H8B107.8
N2—C1—C2i120.83 (12)N1ii—C9—N1112.3 (2)
C2—C1—C2i118.3 (2)N1ii—C9—H9A109.2
C3—C2—C1120.53 (19)N1—C9—H9A109.2
C3—C2—H2119.7N1ii—C9—H9B109.2
C1—C2—H2119.7N1—C9—H9B109.2
C2—C3—C4121.23 (19)H9A—C9—H9B107.9
N1—Ag1—O1—C5−166.41 (14)Ag1—O1—C5—C4178.7 (2)
N1i—Ag1—O1—C5−23.97 (18)C3i—C4—C5—O1i0.9 (4)
O1W—Ag1—O1—C599.57 (14)C3—C4—C5—O1i177.1 (2)
O1i—Ag1—O1—C5−0.38 (15)C3i—C4—C5—O1−177.1 (2)
N1i—Ag1—N1—C9−179.54 (11)C3—C4—C5—O1−0.9 (4)
O1W—Ag1—N1—C986.50 (15)C6ii—N4—C6—N158.4 (3)
O1—Ag1—N1—C9−23.43 (14)C8—N4—C6—N1−58.5 (2)
O1i—Ag1—N1—C9−41.73 (17)C9—N1—C6—N4−57.9 (2)
N1i—Ag1—N1—C759.91 (14)C7—N1—C6—N458.1 (2)
O1W—Ag1—N1—C7−34.05 (13)Ag1—N1—C6—N4177.33 (13)
O1—Ag1—N1—C7−143.98 (12)C7ii—N3—C7—N1−58.6 (2)
O1i—Ag1—N1—C7−162.28 (10)C8—N3—C7—N158.2 (2)
N1i—Ag1—N1—C6−58.17 (14)C9—N1—C7—N358.2 (2)
O1W—Ag1—N1—C6−152.14 (12)C6—N1—C7—N3−57.8 (2)
O1—Ag1—N1—C697.94 (12)Ag1—N1—C7—N3−177.73 (13)
O1i—Ag1—N1—C679.64 (15)C6—N4—C8—N358.64 (14)
N2—C1—C2—C3176.9 (2)C6ii—N4—C8—N3−58.64 (14)
C2i—C1—C2—C3−4.8 (4)C7—N3—C8—N4−58.54 (13)
C1—C2—C3—C40.5 (3)C7ii—N3—C8—N458.54 (13)
C2—C3—C4—C3i3.8 (4)C7—N1—C9—N1ii−58.1 (2)
C2—C3—C4—C5−172.5 (2)C6—N1—C9—N1ii57.7 (2)
Ag1—O1—C5—O1i0.7 (3)Ag1—N1—C9—N1ii−179.56 (11)

Symmetry codes: (i) x, −y+1/2, z; (ii) x, −y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1iii0.81 (2)1.95 (2)2.742 (2)168 (2)
N2—H2A···O1iv0.84 (2)2.27 (2)3.072 (2)159 (2)

Symmetry codes: (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2988).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235. [PubMed]
  • Yang, G., Wang, Y.-L., Li, J.-P., Zhu, Y., Wang, S.-M., Hou, H.-W., Fan, Y.-T. & Ng, S. W. (2007). Eur. J. Inorg. Chem. pp. 714–719.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography