PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o493–o494.
Published online 2010 January 30. doi:  10.1107/S1600536810003156
PMCID: PMC2979824

tert-Butyl 2-(4-chloro­benzo­yl)-2-methyl­propanoate

Abstract

The title compound, C15H19ClO3, is bent with a dihedral angle of 72.02 (9)° between the mean planes of the benzene ring and a group encompassing the ester functionality (O=C—O—C). In the crystal, mol­ecules related by inversion symmetry are connected by weak C—H(...)O inter­actions into infinite chains. These inter­actions involve H atoms from a methyl group of the dimethyl residue and the O atoms of the ketone on one side of a mol­ecule; on the other side there are inter­actions between H atoms of the benzene ring and the carbonyl O atoms of the ester functionality. There are no directional inter­actions between the chains.

Related literature

For the synthesis, spectroscopic characterization and reactivity of the title compound, see: Logue (1974 [triangle]); Logue et al. (1975 [triangle]). For related structures, see: Crosse et al. (2010 [triangle]); Gould et al. (2010 [triangle]); Logue et al. (2010 [triangle]). For the syntheses and characterization of structurally similar indanone-derived β-keto ester derivatives, see: Mouri et al. (2009 [triangle]); Noritake et al. (2008 [triangle]); Rigby & Dixon (2008 [triangle]). For weak hydrogen-bonded inter­actions, see: Karle et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o493-scheme1.jpg

Experimental

Crystal data

  • C15H19ClO3
  • M r = 282.75
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o493-efi1.jpg
  • a = 8.601 (3) Å
  • b = 9.214 (2) Å
  • c = 11.033 (2) Å
  • α = 72.67 (2)°
  • β = 74.62 (2)°
  • γ = 74.02 (3)°
  • V = 786.3 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 291 K
  • 0.30 × 0.30 × 0.30 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.905, T max = 0.929
  • 2961 measured reflections
  • 2759 independent reflections
  • 1589 reflections with I > 2σ(I)
  • R int = 0.020
  • 3 standard reflections every 166 min intensity decay: 9%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.125
  • S = 1.01
  • 2759 reflections
  • 177 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003156/zl2267sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003156/zl2267Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the Chemistry Department of Michigan Technological University is acknowledged.

supplementary crystallographic information

Comment

Treatment of 2,2-disubstituted t-butyl β-keto esters with trifluoroacetic acid at room temperature quantitatively generates the corresponding 2,2-disubstituted β-keto acids, which were used to probe the nature of the transition state for the thermal decarboxylation of β-keto acids (Logue et al., 1975). Structurally similar indanone-derived β-keto ester derivatives have been prepared recently (Mouri et al., 2009; Noritake et al., 2008; Rigby & Dixon, 2008). The directing nature of weak C—H···O H-bonds has been noted to be of importance to afford the three dimensional structure observed in these kinds of molecules (Karle et al., 2009).

In this contribution we present the solid state structure of one such 2,2-disubstituted β-keto acid, i.e. the title compound being the para-chlorobenzene derivative. This is the third paper in a series of four dealing with substituted derivatives (H–, CH3–, Cl- (this paper) and NO2– on the para-position of the phenyl ring) of the title compound. A more detailed comparison of all four substitution compounds will be given in the fourth paper of this series (Crosse et al., 2010).

The molecule, Fig. 1, displays a bent geometry with a dihedral angle between the mean planes of the phenyl ring and a plane composed of the ester functionality of 72.02 (9)°. Molecules are linked by C—H···O weak hydrogen bonds generating infinite chains as shown in Fig. 2. The phenyl rings are not involved in intercalation or stacking interactions either within or between the chains. Instead, neighbouring t-butyl groups on adjacent chains exhibit hydrophobic stacking.

Experimental

Crystals of the material were synthesized as reported earlier and were grown by evaporation of a solution in hexane (Logue, 1974). M.p. 600–606 K. IR (neat, cm-1) 2982 (m, ring), 1726 (s, C=O), 1682 (s, O—C=O), 1588 (s), 1488 (m), 1388 (m), 1368 (w), 1273 (m), 1133 (m), 1091.6 (m), 987 (w), 920 (w), 842 (m), 739 (m). 1H NMR (CDCl3) δ: 1.27 (s, 9H), 1.47 (s, 6H), 7.36 (d, 2H, J=8.8 Hz), 7.80 (d, 2H, J=9.2 Hz). 13C NMR (CDCl3) δ: 23.8, 27.6, 54.0, 81.9, 130.2, 133.6, 139.0, 173.8, 196.8.

Refinement

All H atoms were placed at calculated positions, with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and refined using a riding model with Uiso(H) constrained to be 1.5 Ueq(C) for methyl groups and 1.2 Ueq(C) for all other C atoms. The quality of the data as reflected by only 58% of the reflections observed, large ADP's and inaccurate C—C bond lengths is low. The data had been collected on a 30 year old single point detector instrument not equipped with a low temperature device as part of a class project with undergraduate students. Due to the time constraints imposed by the class schedule a maximum exposure time of 60 s had to be alloted for measuring each reflection.

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
A Mercury (Macrae et al., 2008) illustration of the packing in the title compound depicting the H-bonded linkages using dashed lines which result in infinite chains.

Crystal data

C15H19ClO3Z = 2
Mr = 282.75F(000) = 300
Triclinic, P1Dx = 1.194 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.601 (3) ÅCell parameters from 25 reflections
b = 9.214 (2) Åθ = 10–15°
c = 11.033 (2) ŵ = 0.24 mm1
α = 72.67 (2)°T = 291 K
β = 74.62 (2)°Prism, colourless
γ = 74.02 (3)°0.30 × 0.30 × 0.30 mm
V = 786.3 (4) Å3

Data collection

Enraf–Nonius TurboCAD-4 diffractometer1589 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.020
graphiteθmax = 25.0°, θmin = 2.0°
non–profiled ω/2τ scansh = 0→10
Absorption correction: ψ scan (North et al., 1968)k = −10→10
Tmin = 0.905, Tmax = 0.929l = −12→13
2961 measured reflections3 standard reflections every 166 min
2759 independent reflections intensity decay: 9%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0499P)2 + 0.1997P] where P = (Fo2 + 2Fc2)/3
2759 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Experimental. Number of psi-scan sets used was 3. Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.16763 (12)0.07087 (11)0.34258 (10)0.1148 (4)
C10.0088 (3)0.2115 (3)0.2795 (3)0.0715 (8)
C20.0200 (4)0.2567 (3)0.1470 (3)0.0732 (8)
H20.1120.21390.09220.088*
C3−0.1066 (3)0.3656 (3)0.0975 (3)0.0652 (7)
H3−0.09960.39520.00830.078*
C4−0.2453 (3)0.4331 (3)0.1768 (2)0.0539 (6)
C5−0.2524 (3)0.3851 (3)0.3101 (2)0.0616 (7)
H5−0.34330.42880.36540.074*
C6−0.1270 (4)0.2740 (3)0.3615 (3)0.0733 (8)
H6−0.13410.24170.45070.088*
C7−0.3731 (3)0.5568 (3)0.1130 (2)0.0567 (6)
O1−0.3574 (2)0.5870 (2)−0.00407 (18)0.0818 (6)
C8−0.5234 (3)0.6450 (3)0.1932 (2)0.0580 (7)
C9−0.6140 (4)0.7842 (4)0.1003 (3)0.0858 (9)
H9A−0.65220.74640.04360.129*
H9B−0.53960.85090.04990.129*
H9C−0.70650.84160.14990.129*
C10−0.6413 (3)0.5359 (4)0.2725 (3)0.0815 (9)
H10A−0.67540.49590.2150.122*
H10B−0.73640.59260.32050.122*
H10C−0.58550.4510.33160.122*
C11−0.4693 (3)0.7139 (3)0.2811 (3)0.0557 (6)
O2−0.5376 (2)0.7174 (2)0.39021 (18)0.0768 (6)
O3−0.3370 (2)0.77357 (18)0.21611 (15)0.0573 (5)
C12−0.2559 (3)0.8503 (3)0.2752 (3)0.0652 (7)
C13−0.1158 (4)0.8952 (4)0.1653 (3)0.0982 (11)
H13A−0.16010.96550.09280.147*
H13B−0.04650.80350.140.147*
H13C−0.0520.9450.19340.147*
C14−0.3741 (4)0.9938 (4)0.3095 (4)0.1056 (12)
H14A−0.42151.05630.23610.158*
H14B−0.31581.0530.33310.158*
H14C−0.46020.96360.3810.158*
C15−0.1904 (5)0.7350 (4)0.3885 (3)0.1139 (13)
H15A−0.28090.71240.45870.171*
H15B−0.11960.77810.41590.171*
H15C−0.1290.64090.36330.171*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0975 (7)0.1088 (7)0.1345 (8)0.0243 (5)−0.0444 (6)−0.0478 (6)
C10.0677 (18)0.0628 (18)0.088 (2)−0.0045 (14)−0.0202 (16)−0.0288 (16)
C20.0654 (18)0.0720 (19)0.080 (2)−0.0162 (16)0.0064 (16)−0.0313 (16)
C30.0745 (19)0.0649 (17)0.0575 (16)−0.0239 (15)0.0015 (15)−0.0214 (14)
C40.0614 (15)0.0556 (15)0.0498 (14)−0.0241 (13)−0.0005 (12)−0.0191 (12)
C50.0671 (17)0.0592 (16)0.0559 (16)−0.0098 (14)−0.0034 (13)−0.0213 (13)
C60.084 (2)0.0683 (18)0.0657 (17)−0.0017 (16)−0.0181 (16)−0.0243 (15)
C70.0618 (17)0.0631 (16)0.0541 (16)−0.0303 (14)−0.0073 (13)−0.0156 (13)
O10.0877 (14)0.1077 (16)0.0519 (12)−0.0260 (12)−0.0120 (10)−0.0194 (11)
C80.0535 (15)0.0655 (16)0.0594 (15)−0.0163 (13)−0.0123 (12)−0.0171 (13)
C90.081 (2)0.093 (2)0.090 (2)−0.0075 (17)−0.0387 (18)−0.0230 (18)
C100.0607 (18)0.104 (2)0.090 (2)−0.0384 (17)0.0024 (15)−0.0343 (18)
C110.0538 (15)0.0572 (16)0.0549 (16)−0.0106 (13)−0.0100 (13)−0.0139 (12)
O20.0796 (13)0.0971 (15)0.0575 (12)−0.0311 (11)0.0045 (10)−0.0289 (10)
O30.0587 (10)0.0672 (11)0.0543 (10)−0.0232 (9)−0.0074 (8)−0.0217 (8)
C120.0684 (17)0.0764 (18)0.0660 (17)−0.0271 (15)−0.0107 (14)−0.0314 (15)
C130.090 (2)0.122 (3)0.105 (3)−0.058 (2)0.0055 (19)−0.049 (2)
C140.096 (3)0.102 (3)0.145 (3)−0.026 (2)−0.008 (2)−0.077 (2)
C150.131 (3)0.137 (3)0.100 (3)−0.054 (3)−0.063 (2)−0.009 (2)

Geometric parameters (Å, °)

Cl1—C11.739 (3)C9—H9C0.96
C1—C61.376 (4)C10—H10A0.96
C1—C21.380 (4)C10—H10B0.96
C2—C31.370 (4)C10—H10C0.96
C2—H20.93C11—O21.197 (3)
C3—C41.392 (3)C11—O31.337 (3)
C3—H30.93O3—C121.483 (3)
C4—C51.394 (3)C12—C151.504 (4)
C4—C71.498 (4)C12—C141.509 (4)
C5—C61.380 (4)C12—C131.515 (4)
C5—H50.93C13—H13A0.96
C6—H60.93C13—H13B0.96
C7—O11.216 (3)C13—H13C0.96
C7—C81.536 (3)C14—H14A0.96
C8—C111.526 (3)C14—H14B0.96
C8—C101.540 (4)C14—H14C0.96
C8—C91.546 (4)C15—H15A0.96
C9—H9A0.96C15—H15B0.96
C9—H9B0.96C15—H15C0.96
C6—C1—C2120.9 (3)C8—C10—H10B109.5
C6—C1—Cl1120.0 (2)H10A—C10—H10B109.5
C2—C1—Cl1119.0 (2)C8—C10—H10C109.5
C3—C2—C1119.0 (3)H10A—C10—H10C109.5
C3—C2—H2120.5H10B—C10—H10C109.5
C1—C2—H2120.5O2—C11—O3125.4 (2)
C2—C3—C4122.0 (3)O2—C11—C8125.1 (2)
C2—C3—H3119O3—C11—C8109.5 (2)
C4—C3—H3119C11—O3—C12122.39 (19)
C3—C4—C5117.5 (3)O3—C12—C15109.6 (2)
C3—C4—C7117.9 (2)O3—C12—C14109.8 (2)
C5—C4—C7124.5 (2)C15—C12—C14113.7 (3)
C6—C5—C4121.1 (2)O3—C12—C13101.9 (2)
C6—C5—H5119.4C15—C12—C13110.8 (3)
C4—C5—H5119.4C14—C12—C13110.4 (3)
C1—C6—C5119.4 (3)C12—C13—H13A109.5
C1—C6—H6120.3C12—C13—H13B109.5
C5—C6—H6120.3H13A—C13—H13B109.5
O1—C7—C4119.2 (2)C12—C13—H13C109.5
O1—C7—C8119.7 (2)H13A—C13—H13C109.5
C4—C7—C8121.1 (2)H13B—C13—H13C109.5
C11—C8—C7110.7 (2)C12—C14—H14A109.5
C11—C8—C10111.1 (2)C12—C14—H14B109.5
C7—C8—C10110.0 (2)H14A—C14—H14B109.5
C11—C8—C9106.4 (2)C12—C14—H14C109.5
C7—C8—C9109.0 (2)H14A—C14—H14C109.5
C10—C8—C9109.7 (2)H14B—C14—H14C109.5
C8—C9—H9A109.5C12—C15—H15A109.5
C8—C9—H9B109.5C12—C15—H15B109.5
H9A—C9—H9B109.5H15A—C15—H15B109.5
C8—C9—H9C109.5C12—C15—H15C109.5
H9A—C9—H9C109.5H15A—C15—H15C109.5
H9B—C9—H9C109.5H15B—C15—H15C109.5
C8—C10—H10A109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.962.583.476 (4)155
C5—H5···O2ii0.932.73.316 (3)125

Symmetry codes: (i) −x−1, −y+1, −z; (ii) −x−1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2267).

References

  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Crosse, C. M., Logue, M. W., Luck, R. L., Pignotti, L. R. & Waineo, M. F. (2010). Acta Cryst. E66, o495–o496. [PMC free article] [PubMed]
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gould, G. B., Jackman, B. G., Logue, M. W., Luck, R. L., Pignotti, L. R., Smith, A. R. & White, N. M. (2010). Acta Cryst. E66, o491–o492. [PMC free article] [PubMed]
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Karle, I. L., Huang, L., Venkateshwarlu, P., Sarma, A. V. S. & Ranganathan, S. (2009). Heterocycles, 79, 471–486. [PMC free article] [PubMed]
  • Logue, M. W. (1974). J. Org. Chem.39, 3455–3456.
  • Logue, M. W., Luck, R. L., Maynard, N. S., Orlowski, S. S., Pignotti, L. R., Putman, A. L. & Whelan, K. M. (2010). Acta Cryst. E66, o489–o490. [PMC free article] [PubMed]
  • Logue, M. W., Pollack, R. M. & Vitullo, V. P. (1975). J. Am. Chem. Soc.97, 6868–6869.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Mouri, S., Chen, Z., Matsunage, S. & Shibasaki, M. (2009). Chem. Commun. pp. 5138–5140. [PubMed]
  • Noritake, S., Shibata, N., Nakamura, S., Toru, T. & Shiro, M. (2008). Eur. J. Org. Chem. pp. 3465–3468.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Rigby, C. L. & Dixon, D. J. (2008). Chem. Commun. pp. 3798–3800. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography