PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o409.
Published online 2010 January 20. doi:  10.1107/S1600536810001261
PMCID: PMC2979816

Tricyclo­[3.3.1.03,7]nonane-3,7-diyl bis­(methane­sulfonate)

Abstract

The crystal structure of the title compound, C11H18O6S2, was determined to investigate the effect of the eclipsed mesyl groups on the bond length of the vicinal quaternary C atoms. The two quaternary C atoms of the noradamantane skeleton and the two O atoms to which they are connected all located essentially in the same plane [maximum deviation 0.01 Å], resulting in an eclipsing conformation of the C—O bonds. The C—C bond of the quaternary C atoms is 1.597 (3) Å is considerably longer than the other C—C bonds of the mol­ecule.

Related literature

For reviews on noradamantene and analogous pyramidalized alkenes, see: Borden (1989 [triangle], 1996 [triangle]); Vázquez & Camps (2005 [triangle]). For the syntheses of mesylate esters of acyclic alcohols, see: Danheiser et al. (1988 [triangle]); Marshall & Chobanian (2005 [triangle]). For the synthesis of the precursor diol (tricyclo-[3.3.1.03,7]nonane-3,7-diol), an important inter­mediate in the synthetic route towards the generation of noradamantene, see: Zalikowski et al. (1980 [triangle]); Bertz (1985 [triangle]). For the synthesis of the title compound, see: Ioannou & Nicolaides (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o409-scheme1.jpg

Experimental

Crystal data

  • C11H18O6S2
  • M r = 310.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o409-efi1.jpg
  • a = 8.8017 (2) Å
  • b = 10.3107 (2) Å
  • c = 14.4623 (3) Å
  • β = 92.092 (2)°
  • V = 1311.60 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.43 mm−1
  • T = 100 K
  • 0.18 × 0.06 × 0.04 mm

Data collection

  • Oxford Diffraction Xcalibur-3 diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.919, T max = 1.000
  • 8431 measured reflections
  • 2308 independent reflections
  • 1791 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.073
  • S = 1.00
  • 2308 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: WinGX (Farrugia, 1999 [triangle]); software used to prepare material for publication: WinGX.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810001261/nc2172sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001261/nc2172Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Research Promotion Foundation of Cyprus and the European Union via grant ΠENEK/ENIΣX/0308/01 and the University of Cyprus via a SRP grant is gratefully acknowledged. The A. G. Leventis Foundation is gratefully acknowledged for a generous donation which enabled the purchase of the NMR spectrometer at the University of Cyprus.

supplementary crystallographic information

Experimental

Synthesis of tricyclo-[3.3.1.03,7]nonane-3,7-diyl dimesylate (1). To a solution of tricyclo-[3.3.1.03,7]nonane-3,7-diol (1.00 g, 6.49 mmol) in pyridine (10 ml), mesyl chloride (CH3SO2Cl)(5.02 ml, 65 mmol) was added slowly with stirring at ambient temperature. The mixture was then heated at 120 oC for 5 h. After cooling, crushed ice (100 g) was added and the mixture extracted with CH2Cl2 (5 x 20 ml). The combined organic phase was washed with 2M HCl (2 x 40 ml), H2O (2 x 20 ml), saturated aqueous NaHCO3 (2 x 20 ml), and dried (Na2SO4). After filtration and removal of the solvent under reduced pressure, a brown solid (1.92 g, 96%) was isolated. Recrystallization from THF/hexane afforded pure 1 (1.71 g, 85%) as colorless crystals m.p. 127–128 oC. Elemental analysis (%): Calculated for C11H18O6S2: C,42.6; H, 5.8; O, 30.9; S, 20.7. Found: C, 42.3; H, 5.7; S,20.3. High-resolution Mass Spectrometry (TOF MS ES+): Calculated for C11H19O6S2 311.0623 found: 311.0629. νmax(KBr) 3449, 2943, 1464, 1414, 1341, 1190, 1169, 1101, 1018, 976, 955, 856, 824, 802, 760, 669, 615, 565, 515, 474 cm-1; δH(300 MHz, CDCl3) 3.10 (6H, –CH3, s), 2.50 (6H(4eq+2CH), d, J 6.9 Hz), 2.26 (4Hax,d, J 9.0 Hz), 1.51 (2Hbridge, s); δ13C (75.5 MHz, CDCl3) 91.30 (–CO), 47.42(–CH2),40.60 (–CH3), 34.98 (–CH), 32.28 (–CH2 bridge).

Refinement

The H atoms were positioned with idealized geometry and refined using a riding model with Uiso(H) = 1.2 or 1.5 (methyl H atoms) of Ueq(C).

Figures

Fig. 1.
Structure of the title compound tricyclo-[3.3.1.03,7]nonane-3,7-diyldimesylate with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.

Crystal data

C11H18O6S2F(000) = 656
Mr = 310.37Dx = 1.572 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4520 reflections
a = 8.8017 (2) Åθ = 3.0–30.2°
b = 10.3107 (2) ŵ = 0.43 mm1
c = 14.4623 (3) ÅT = 100 K
β = 92.092 (2)°Plate, colorless
V = 1311.60 (5) Å30.18 × 0.06 × 0.04 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur-3 diffractometer2308 independent reflections
Radiation source: fine-focus sealed tube1791 reflections with I > 2σ(I)
graphiteRint = 0.032
Detector resolution: 16.0288 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = −6→10
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008)k = −12→12
Tmin = 0.919, Tmax = 1.000l = −17→17
8431 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0414P)2] where P = (Fo2 + 2Fc2)/3
2308 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.15096 (6)0.16605 (5)−0.14000 (3)0.01491 (14)
S20.58045 (5)0.26342 (5)0.01791 (4)0.01445 (14)
O10.24294 (14)0.17383 (12)−0.04474 (9)0.0127 (3)
O2−0.00837 (15)0.17596 (14)−0.12494 (10)0.0203 (4)
O30.20781 (16)0.05237 (15)−0.18235 (10)0.0263 (4)
O40.46545 (14)0.19451 (13)0.08427 (9)0.0147 (3)
O50.50094 (15)0.33931 (14)−0.05052 (10)0.0204 (3)
O60.69589 (15)0.32558 (14)0.07372 (10)0.0213 (4)
C10.1867 (2)0.23973 (19)0.03658 (13)0.0118 (4)
C20.0669 (2)0.16160 (19)0.08527 (13)0.0141 (5)
H2A0.08270.06900.07840.017*
H2B−0.03510.18380.06290.017*
C30.0968 (2)0.2058 (2)0.18502 (14)0.0164 (5)
H30.03860.15530.22890.020*
C40.0647 (2)0.3523 (2)0.19196 (14)0.0179 (5)
H4A0.08960.38180.25440.021*
H4B−0.04270.36810.17920.021*
C50.1586 (2)0.4297 (2)0.12291 (14)0.0157 (5)
H50.13970.52310.12710.019*
C60.3291 (2)0.39729 (18)0.13632 (15)0.0154 (5)
H6A0.39080.44620.09440.018*
H6B0.36570.41160.19960.018*
C70.3234 (2)0.25284 (19)0.11167 (14)0.0122 (4)
C80.2677 (2)0.17855 (19)0.19476 (14)0.0150 (4)
H8A0.31130.21230.25240.018*
H8B0.28960.08660.19040.018*
C90.1300 (2)0.37854 (18)0.02389 (14)0.0144 (4)
H9A0.02310.38140.00530.017*
H9B0.18860.4258−0.02060.017*
C100.2097 (2)0.3026 (2)−0.20119 (15)0.0201 (5)
H10A0.17150.3795−0.17280.030*
H10B0.17110.2975−0.26400.030*
H10C0.31880.3057−0.20030.030*
C110.6535 (2)0.1234 (2)−0.03142 (15)0.0215 (5)
H11A0.70660.07340.01550.032*
H11B0.72230.1469−0.07860.032*
H11C0.57160.0728−0.05830.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0177 (3)0.0144 (3)0.0126 (3)−0.0015 (2)0.0004 (2)−0.0005 (2)
S20.0119 (2)0.0140 (3)0.0175 (3)−0.0014 (2)0.0012 (2)0.0022 (2)
O10.0132 (7)0.0129 (7)0.0119 (7)0.0017 (6)0.0005 (6)−0.0006 (6)
O20.0142 (7)0.0285 (9)0.0179 (8)−0.0048 (6)−0.0022 (6)0.0026 (7)
O30.0400 (9)0.0201 (9)0.0186 (9)0.0031 (7)0.0002 (7)−0.0068 (7)
O40.0105 (7)0.0148 (8)0.0189 (8)0.0027 (5)0.0025 (6)0.0048 (6)
O50.0169 (7)0.0199 (8)0.0242 (8)−0.0022 (6)−0.0016 (6)0.0095 (7)
O60.0167 (7)0.0224 (8)0.0247 (9)−0.0059 (6)−0.0014 (6)−0.0005 (7)
C10.0141 (9)0.0114 (10)0.0098 (10)0.0018 (8)−0.0004 (8)−0.0024 (8)
C20.0112 (10)0.0135 (11)0.0177 (11)−0.0001 (8)0.0015 (8)−0.0008 (9)
C30.0149 (10)0.0177 (11)0.0167 (11)−0.0009 (9)0.0035 (9)0.0029 (9)
C40.0187 (10)0.0205 (12)0.0144 (11)0.0037 (9)0.0013 (9)−0.0051 (9)
C50.0182 (10)0.0114 (11)0.0173 (11)0.0027 (9)−0.0025 (9)−0.0015 (9)
C60.0174 (10)0.0136 (11)0.0151 (11)−0.0028 (8)−0.0019 (8)−0.0010 (9)
C70.0086 (9)0.0127 (11)0.0154 (11)0.0027 (8)0.0006 (8)0.0000 (8)
C80.0182 (10)0.0144 (11)0.0125 (11)−0.0003 (9)0.0004 (8)0.0016 (9)
C90.0157 (10)0.0107 (10)0.0165 (11)0.0028 (8)−0.0022 (8)0.0010 (9)
C100.0234 (11)0.0223 (12)0.0146 (11)−0.0026 (9)0.0015 (9)0.0054 (9)
C110.0222 (11)0.0187 (11)0.0242 (12)−0.0004 (9)0.0068 (10)0.0008 (10)

Geometric parameters (Å, °)

S1—O31.4219 (15)C4—H4A0.9700
S1—O21.4307 (14)C4—H4B0.9700
S1—O11.5742 (14)C5—C91.538 (3)
S1—C101.751 (2)C5—C61.542 (3)
S2—O51.4251 (15)C5—H50.9800
S2—O61.4264 (14)C6—C71.532 (3)
S2—O41.5878 (13)C6—H6A0.9700
S2—C111.744 (2)C6—H6B0.9700
O1—C11.460 (2)C7—C81.521 (3)
O4—C71.456 (2)C8—H8A0.9700
C1—C21.520 (3)C8—H8B0.9700
C1—C91.525 (3)C9—H9A0.9700
C1—C71.597 (3)C9—H9B0.9700
C2—C31.526 (3)C10—H10A0.9600
C2—H2A0.9700C10—H10B0.9600
C2—H2B0.9700C10—H10C0.9600
C3—C81.532 (3)C11—H11A0.9600
C3—C41.541 (3)C11—H11B0.9600
C3—H30.9800C11—H11C0.9600
C4—C51.542 (3)
O3—S1—O2119.13 (9)C4—C5—C6110.43 (16)
O3—S1—O1103.95 (8)C9—C5—H5111.8
O2—S1—O1109.80 (8)C4—C5—H5111.8
O3—S1—C10109.27 (10)C6—C5—H5111.8
O2—S1—C10109.20 (9)C7—C6—C599.07 (14)
O1—S1—C10104.44 (9)C7—C6—H6A112.0
O5—S2—O6117.89 (9)C5—C6—H6A112.0
O5—S2—O4110.96 (8)C7—C6—H6B112.0
O6—S2—O4108.40 (8)C5—C6—H6B112.0
O5—S2—C11110.46 (10)H6A—C6—H6B109.6
O6—S2—C11109.76 (10)O4—C7—C8108.17 (15)
O4—S2—C1197.43 (9)O4—C7—C6116.36 (15)
C1—O1—S1123.37 (11)C8—C7—C6108.33 (16)
C7—O4—S2123.55 (12)O4—C7—C1114.40 (15)
O1—C1—C2112.81 (15)C8—C7—C1103.79 (14)
O1—C1—C9117.32 (16)C6—C7—C1104.95 (15)
C2—C1—C9108.87 (15)C7—C8—C3100.29 (15)
O1—C1—C7108.56 (14)C7—C8—H8A111.7
C2—C1—C7104.36 (15)C3—C8—H8A111.7
C9—C1—C7103.75 (15)C7—C8—H8B111.7
C1—C2—C3100.43 (15)C3—C8—H8B111.7
C1—C2—H2A111.7H8A—C8—H8B109.5
C3—C2—H2A111.7C1—C9—C599.66 (15)
C1—C2—H2B111.7C1—C9—H9A111.8
C3—C2—H2B111.7C5—C9—H9A111.8
H2A—C2—H2B109.5C1—C9—H9B111.8
C2—C3—C899.61 (15)C5—C9—H9B111.8
C2—C3—C4109.18 (17)H9A—C9—H9B109.6
C8—C3—C4110.84 (16)S1—C10—H10A109.5
C2—C3—H3112.2S1—C10—H10B109.5
C8—C3—H3112.2H10A—C10—H10B109.5
C4—C3—H3112.2S1—C10—H10C109.5
C3—C4—C5111.15 (16)H10A—C10—H10C109.5
C3—C4—H4A109.4H10B—C10—H10C109.5
C5—C4—H4A109.4S2—C11—H11A109.5
C3—C4—H4B109.4S2—C11—H11B109.5
C5—C4—H4B109.4H11A—C11—H11B109.5
H4A—C4—H4B108.0S2—C11—H11C109.5
C9—C5—C4110.63 (16)H11A—C11—H11C109.5
C9—C5—C699.70 (16)H11B—C11—H11C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2172).

References

  • Bertz, S. H. (1985). J. Org. Chem.50, 3585–3592.
  • Borden, W. T. (1989). Chem. Rev.89, 1095–1109.
  • Borden, W. T. (1996). Synlett, pp. 711–719.
  • Danheiser, R. L., Tsai, Y.-M. & Fink, D. M. (1988). Org. Synth.66, 1–7.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Ioannou, S. & Nicolaides, A. V. (2009). Tetrahedron Lett.50, 6938–6940.
  • Marshall, J. A. & Chobanian, H. (2005). Org. Synth.82, 43-54.
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton,England.
  • Sheldrick, G. M. (2008). Acta Cryst.A64, 112–122. [PubMed]
  • Vázquez, S. & Camps, P. (2005). Tetrahedron, 61, 5147–5208.
  • Zalikowski, J. A., Gilbert, K. E. & Borden, W. T. (1980). J. Org. Chem.45, 346–347.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography