PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m239.
Published online 2010 January 30. doi:  10.1107/S1600536810001820
PMCID: PMC2979813

catena-Poly[[dipyridine­nickel(II)]-trans-di-μ-chlorido] from powder data

Abstract

The asymetric unit of the title compound, [NiCl2(C5H5N)2]n, contains two NiII ions located on different twofold rotational axes, two chloride anions and two pyridine rings in general positions. Each NiII ion is coordinated by two pyridine rings, which form dihedral angles of 33.0 (2) and 11.0 (2)° for the two centers, and four chloride anions in a distorted octa­hedral geometry. The chloride anions bridge NiII ions related by translation along the short b axes into two crystallographically independent polymeric chains.

Related literature

For the preparation of related compounds, see: Liptay et al. (1986 [triangle]). For related polymeric chains of octa­hedrally coordinated transition metal ions, see: Hu et al. (2003 [triangle]) and McConnell & Nuttall (1978 [triangle]). For the isostructural compound [CoCl2(C5H5N)2] with a detailed discussion of the pseudo-ortho­rhom­bic symmetry, see: Dunitz (1957 [triangle]). For details of the indexing algorithm, see: Boultif & Louër (1991 [triangle]). For details of Rietveld refinement, see: Young (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m239-scheme1.jpg

Experimental

Crystal data

  • [NiCl2(C5H5N)2]
  • M r = 287.79
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m239-efi1.jpg
  • a = 19.2483 (4) Å
  • b = 3.62535 (4) Å
  • c = 17.3504 (2) Å
  • β = 116.883 (2)°
  • V = 1079.91 (3) Å3
  • Z = 4
  • Cu Kα1 radiation
  • λ = 1.54056 Å
  • μ = 6.85 mm−1
  • T = 298 K
  • Cylinder, 12 × 0.5 mm

Data collection

  • Stoe Stadi-P diffractometer
  • Specimen mounting: specimen was sealed in a 0.5 mm diameter borosilicate glass capillary
  • Data collection mode: transmission
  • Scan method: step
  • min = 2°, 2θmax = 110°, 2θstep = 0.01°

Refinement

  • R p = 0.024
  • R wp = 0.032
  • R exp = 0.028
  • R Bragg = 0.009
  • χ2 = 1.357
  • 10599 data points
  • 126 parameters
  • 61 restraints
  • H-atom parameters constrained

Data collection: WinXPOW (Stoe & Cie, 2004 [triangle]); cell refinement: DASH (David et al., 2004); data reduction: WinXPOW (Stoe & Cie, 2004 [triangle]); program(s) used to solve structure: DASH; program(s) used to refine structure: TOPAS (Coelho, 2007 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001820/cv2682sup1.cif

Rietveld powder data: contains datablocks I. DOI: 10.1107/S1600536810001820/cv2682Isup2.rtv

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Sonja Hammer, Jürgen Glinnemann and Martin U. Schmidt for helpful discussions.

supplementary crystallographic information

Comment

The title compound (I) was prepared by thermal decomposition of [NiCl2(C5H5N)4]. The product, [NiCl2(C5H5N)2], is isotypic with trans-[CoCl2(C5H5N)2] (Dunitz, 1957). The space group of the title compound was determined to P2/c with a = 19.24 Å, b= 3.63 Å, c = 17.35 Å, β= 116.82 ° and Z = 4. The four nickel atoms are located on two special positions (the twofold axes; Wyckoff positions 2e and 2f). Each nickel atom is coordinated by four chlorine atoms in the equatorial plane and two nitrogen atoms of the pyridine rings in axial positions. This leads to two different distorted coordination octahedra which are connected by edge sharing via bridging Cl atoms to build up two different one-dimensional chains. The distance between neighboured nickel atoms in each chain is equal to the lattice parameter b= 3.63 Å. An orthorhombic unit cell, found by DICVOL (Boultif & Louër, 1991), is related to the pseudo-orthorhombic cell for the isostructural compound trans-[CoCl2(C5H5N)2], which was discussed by Dunitz (1957). Similar as for the last compound, we found that the structure solution and refinement in orthorhombic symmetry does not lead to satisfying results.

Experimental

[NiCl2(C5H5N)4] was heated to 400 K for 17 h (capillary, diameter: 0.5 mm).

Refinement

Indexing with DICVOL (Boultif & Louër, 1991) led to two possible unit cells, a monoclinic and an orthorhombic one. The Pawley fit calculates nearly identical profile χ2 values for both cells. The structure solution was carried out using simulated annealing with DASH (David et al., 2004) and a modified molecular structure model based on [CoCl2(C5H5N)2] (Dunitz, 1957). The structure solution was tried in both crystal systems: monoclinic in P2/c with a = 19.24 Å, b = 3.63 Å, c = 17.35 Å, β= 116.82 ° and Z = 4 and several orthorhombic space groups with C-centered cells with a = 17.35 Å, b = 34.34 Å, c = 3.63 Å and Z = 8. As for [CoCl2(C5H5N)2] (Dunitz, 1957) the structure solution was succesful only for the monoclinic cell. The Rietveld refinement was carried out using TOPAS (Coelho, 2007) with Chebychev polynomial background correction and the pyridine rings restrained to be flat. Thermal parameters of non-hydrogen atoms were combined refined, except Ni. Thermal parameters of hydrogen atoms were constrained to those of the non-hydrogen atoms. The smooth difference curve (Fig. 2) shows that the structure is correct.

Figures

Fig. 1.
A portion of the crystal structure of (I) showing the atomic numbering of independent atoms and 50% probability displacement spheres.
Fig. 2.
Experimental (black) and calculated (red) powder profiles of (I) with difference plot (blue).

Crystal data

[NiCl2(C5H5N)2]F(000) = 584.0
Mr = 287.79Dx = 1.770 Mg m3
Monoclinic, P2/cCu Kα1 radiation, λ = 1.54056 Å
Hall symbol: -P 2ycµ = 6.85 mm1
a = 19.2483 (4) ÅT = 298 K
b = 3.62535 (4) ÅParticle morphology: no specific habit
c = 17.3504 (2) Ålight green
β = 116.883 (2)°cylinder, 12 × 0.5 mm
V = 1079.91 (3) Å3Specimen preparation: Prepared at 400 K
Z = 4

Data collection

Stoe Stadi-P diffractometerData collection mode: transmission
Radiation source: X-ray tubeScan method: step
primary focussing, Ge 111min = 2°, 2θmax = 110°, 2θstep = 0.01°
Specimen mounting: Specimen was sealed in a 0.5 mm diameter borosilicate glass capillary

Refinement

Least-squares matrix: full with fixed elements per cycle126 parameters
Rp = 0.02461 restraints
Rwp = 0.0323 constraints
Rexp = 0.028H-atom parameters constrained
RBragg = 0.009Weighting scheme based on measured s.u.'s w = 1/σ(Yobs)2
χ2 = 1.357(Δ/σ)max = 0.001
10599 data pointsBackground function: Chebychev polynomial
Excluded region(s): nonePreferred orientation correction: none
Profile function: modified Thompson–Cox–Hastings pseudo-Voigt (Young, 1993)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.08340 (13)0.5786 (4)0.19907 (14)0.01963 (5)*
Ni100.5639 (4)0.250.02118 (10)*
C110.15787 (11)0.4942 (5)0.25223 (11)0.01963 (5)*
C150.06141 (11)0.6731 (5)0.11471 (12)0.01963 (5)*
Cl1−0.07443 (14)1.0643 (6)0.14865 (16)0.01963 (5)*
H110.1719 (7)0.428 (3)0.3113 (6)0.02356 (6)*
C120.21450 (11)0.5012 (4)0.22198 (12)0.01963 (5)*
C140.11707 (11)0.6807 (5)0.08359 (12)0.01963 (5)*
H150.0088 (6)0.737 (4)0.0767 (7)0.02356 (6)*
H120.2662 (6)0.443 (3)0.2583 (7)0.02356 (6)*
C130.19366 (11)0.5934 (5)0.13910 (12)0.01963 (5)*
H140.1030 (5)0.740 (4)0.0275 (7)0.02356 (6)*
H130.2309 (6)0.599 (4)0.1200 (7)0.02356 (6)*
N20.58174 (12)0.1488 (4)0.37857 (14)0.01963 (5)*
Ni20.50.1713 (5)0.250.01780 (10)*
C210.55807 (11)0.1700 (5)0.44079 (12)0.01963 (5)*
C250.65861 (11)0.1073 (5)0.39945 (12)0.01963 (5)*
Cl20.42724 (14)0.6650 (5)0.27908 (17)0.01963 (5)*
H210.5032 (6)0.202 (4)0.4254 (6)0.02356 (6)*
C220.61220 (10)0.1492 (5)0.52776 (12)0.01963 (5)*
C240.71442 (11)0.0859 (5)0.48673 (12)0.01963 (5)*
H250.6734 (6)0.098 (4)0.3546 (7)0.02356 (6)*
H220.5945 (6)0.162 (4)0.5697 (7)0.02356 (6)*
C230.68985 (11)0.1072 (5)0.55017 (12)0.01963 (5)*
H240.7655 (6)0.057 (4)0.5017 (7)0.02356 (6)*
H230.7259 (6)0.097 (4)0.6068 (7)0.02356 (6)*

Geometric parameters (Å, °)

Ni1—Cl12.481 (2)C12—C131.349 (3)
Ni2—Cl22.461 (3)C14—C131.385 (2)
N1—Ni12.155 (3)C14—H140.91 (1)
N1—C111.343 (2)C13—H130.92 (1)
N1—C151.371 (3)C21—H210.97 (1)
N2—Ni22.070 (2)C21—C221.395 (2)
N2—C211.350 (4)C25—C241.408 (2)
N2—C251.363 (3)C25—H250.94 (1)
C11—H110.96 (1)C22—H220.93 (1)
C11—C121.408 (3)C22—C231.372 (3)
C15—C141.401 (4)C24—C231.383 (4)
C15—H150.954 (9)C24—H240.90 (1)
C12—H120.93 (1)C23—H230.912 (9)
Ni1—N1—C15121.1 (2)C11—C12—H12121.0 (7)
Ni1—Cl1—Ni193.8 (1)C11—C12—C13119.7 (2)
Ni1—N1—C11118.3 (2)C11—N1—C15120.6 (2)
Ni2—N2—C21119.5 (2)C12—C13—C14120.3 (2)
Ni2—N2—C25119.7 (2)C12—C13—H13119.2 (7)
Ni2—Cl2—Ni294.0 (1)C13—C14—H14120.4 (7)
N1—Ni1—Cl189.4 (1)C14—C15—H15119.1 (7)
N1—Ni1—N1177.1 (1)C14—C13—H13120.3 (7)
N1—C11—C12120.4 (2)C15—C14—C13119.0 (2)
N1—C15—C14119.7 (2)C15—C14—H14120.5 (7)
N1—C15—H15121.2 (7)C21—N2—C25120.8 (2)
N1—C11—H11119.0 (7)C21—C22—H22118.9 (8)
N2—C21—H21120.3 (7)C21—C22—C23119.84 (19)
N2—C21—C22120.3 (2)C22—C23—C24120.1 (2)
N2—C25—C24120.0 (2)C22—C23—H23120.7 (8)
N2—C25—H25118.8 (8)C23—C24—H24120.6 (8)
N2—Ni2—Cl291.9 (1)C23—C24—H24120.6 (8)
N2—Ni2—N2175.5 (1)C24—C25—H25120.5 (8)
Cl1—Ni1—Cl186.1 (1)C24—C23—H23119.2 (8)
Cl1—Ni1—Cl1179.9 (1)C25—C24—C23118.9 (2)
Cl1—Ni1—Cl193.8 (1)C25—C24—H24120.8 (8)
Cl1—Ni1—Cl186.2 (1)H11—C11—C12119.7 (7)
Cl2—Ni2—Cl286.7 (1)H12—C12—C13119.3 (7)
Cl2—Ni2—Cl2179.3 (1)H22—C22—C23121.3 (8)
Cl2—Ni2—Cl294.0 (1)H21—C21—C22119.1 (7)
Cl2—Ni2—Cl285.3 (1)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2682).

References

  • Boultif, A. & Louër, D. (1991). J. Appl. Cryst.24, 987–993.
  • Coelho, A. A. (2007). TOPAS Academic User Manual. Coelho Software, Brisbane, Australia.
  • David, W. I. F., Shankland, K., Van de Streek, J., Pidcock, E. & Motherwell, S. (2004). DASH Cambridge Crystallographic Data Centre, Cambridge, England
  • Dunitz, J. D. (1957). Acta Cryst.10, 307–313.
  • Hu, C., Li, Q. & Englert, U. (2003). CrystEngComm, 5, 519–529.
  • Liptay, G., Wadsten, T. & Borbély-Kuszmann, A. (1986). J. Therm. Anal.31, 845–852.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • McConnell, A. A. & Nuttall, R. H. (1978). J. Mol. Struct.49, 207–209.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2004). WinXPOW Stoe & Cie, Darmstadt, Germany.
  • Young, R. A. (1993). The Rietveld Method New York: Oxford University Press Inc.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography