PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m192.
Published online 2010 January 23. doi:  10.1107/S1600536810002199
PMCID: PMC2979802

catena-Poly[lead(II)-bis­(μ2-pyridazine-3-carboxyl­ato-κ3 N 2,O:O)]

Abstract

In the title structure, [Pb(C5H3N2O2)2]n, the PbII ion is six-coordinated by two pyridazine-3-carboxyl­ate ligands via N and O atoms, with the carboxyl­ato O atoms acting as bidentate and bridging adjacent PbII ions, giving rise to catenated mol­ecular ribbons propagating along the a-axis direction. The ribbons are connected by C—H(...)O hydrogen bonds and van der Waals inter­actions.

Related literature

For the structures of 3d-metal and Mg(II) complexes with pyridazine-3-carboxyl­ate and water ligands containing monomeric mol­ecules with an octa­hedral enviroment for the metal ion, see: Ardiwinata et al. (1989 [triangle]), Gryz et al. (2003 [triangle], 2004 [triangle], 2006 [triangle]). Centrosymmetric dimeric mol­ecules, each with a different bridging mode, have been reported in the structure of a calcium(II) complex (Starosta & Leciejewicz, 2007 [triangle]), a uranyl complex (Leciejewicz & Starosta, 2009 [triangle]) as well as in the structure of a lead(II) complex with pyridazine-4-carboxyl­ate ligands (Starosta & Leciejewicz, 2009 [triangle]). For the structure of pyridazine-3-carboxylic acid hydro­chloride, see: Gryz et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m192-scheme1.jpg

Experimental

Crystal data

  • [Pb(C5H3N2O2)2]
  • M r = 453.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m192-efi1.jpg
  • a = 8.0336 (16) Å
  • b = 10.386 (2) Å
  • c = 13.766 (3) Å
  • β = 93.72 (3)°
  • V = 1146.2 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 14.74 mm−1
  • T = 293 K
  • 0.33 × 0.09 × 0.08 mm

Data collection

  • Kuma KM-4 four-circle diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.284, T max = 0.379
  • 3587 measured reflections
  • 3365 independent reflections
  • 2119 reflections with I > 2σ(I)
  • R int = 0.040
  • 3 standard reflections every 200 reflections intensity decay: 1.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.137
  • S = 1.05
  • 3365 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 6.57 e Å−3
  • Δρmin = −4.30 e Å−3

Data collection: KM-4 Software (Kuma, 1996 [triangle]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002199/kp2247sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002199/kp2247Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In the structure of the title compound (I) each PbII ion is coordinated by two symmetry independent ligand molecules viaN,O atoms; their O atoms act as bidentate and bridging to adjacent metal ions (Fig. 1) to form molecular ribbons extending in the a direction (Fig.2). The second O atom of each carboxylato group does not participate in coordination. The coordination environment of a PbII ion involving O11,N12, O21, N22 and two bridging carboxylate O11(I) and O21(II) atoms (Table 1) is highly distorted. Both pyridazine rings are planar with r.m.s. of 0.0037 (2)Å and 0.0120((2)Å. The dihedral angle between the rings is 45.2 (1)°. Carboxylato planes make dihedral angles with the respective rings of 9.7 (1)° (C13/O11/O12) and of 8.8 (2)° (C23/O21/22). Bond distances and bond angles within both ligand molecules are in fair agreement with those reported for pyridazine-3-carboxylic acid chloride and other metal complexes with this ligand. The ribbons are held together by weak interactions between ring carbon atoms and carboxylato O atoms belonging to adjacent ribbons (Table 2).

Experimental

2 mmols of pyridazine-3-carboxylic acid dissolved in 50 ml of hot water were boiled under reflux for three hours with small excess of lead hydroxide. After cooling to room temperature the mixture was filtered and left for crystallization. After evaporation to dryness, colourless single crystals were found on the bottom of the reaction vessel. They were separated, washed with cold ethanol and dried in air.

Refinement

H atoms attached to pyridazine-ring C atoms were positioned geometrically and refined with a riding model using AFIX43 instruction. A maximum peak of 6.566 e Å3 and a deepest hole of -4.302 e Å3(each at 0.80 Å) were found on the final electron density map close to the Pb1 atom.

Figures

Fig. 1.
A structural unit of (1) with atom labelling scheme and 50% probability displacement ellipsoids.
Fig. 2.
The alignement of two ribbons in the structure.

Crystal data

[Pb(C5H3N2O2)2]F(000) = 832
Mr = 453.38Dx = 2.627 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.0336 (16) ÅCell parameters from 25 reflections
b = 10.386 (2) Åθ = 6–15°
c = 13.766 (3) ŵ = 14.74 mm1
β = 93.72 (3)°T = 293 K
V = 1146.2 (4) Å3Blocks, colourless
Z = 40.33 × 0.09 × 0.08 mm

Data collection

Kuma KM-4 four-circle diffractometer2119 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
graphiteθmax = 30.1°, θmin = 2.5°
profile data from ω/2θ scansh = 0→11
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008)k = 0→14
Tmin = 0.284, Tmax = 0.379l = −19→19
3587 measured reflections3 standard reflections every 200 reflections
3365 independent reflections intensity decay: 1.3%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0903P)2] where P = (Fo2 + 2Fc2)/3
3365 reflections(Δ/σ)max = 0.002
172 parametersΔρmax = 6.57 e Å3
0 restraintsΔρmin = −4.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pb10.25237 (3)1.03613 (3)1.006155 (19)0.02242 (12)
O110.0180 (7)0.9406 (6)0.8924 (4)0.0250 (12)
N120.3296 (8)0.8553 (6)0.8814 (5)0.0224 (13)
N220.1664 (8)0.8074 (6)1.0764 (5)0.0214 (13)
O210.4781 (8)0.9011 (6)1.0862 (5)0.0301 (13)
N210.0078 (8)0.7670 (7)1.0745 (5)0.0259 (15)
O12−0.0827 (8)0.7546 (6)0.8339 (6)0.0388 (17)
O220.5838 (9)0.7035 (7)1.1022 (7)0.052 (2)
N110.4876 (9)0.8212 (8)0.8732 (6)0.0291 (16)
C160.5237 (12)0.7161 (9)0.8257 (7)0.033 (2)
H160.63490.69370.82030.039*
C140.2380 (10)0.6694 (8)0.7923 (6)0.0257 (16)
H140.15170.61830.76560.031*
C26−0.0251 (11)0.6477 (9)1.0961 (7)0.0311 (19)
H26−0.13580.62141.09590.037*
C170.0322 (10)0.8273 (8)0.8564 (6)0.0207 (15)
C130.2049 (9)0.7810 (7)0.8424 (5)0.0182 (14)
C230.2885 (10)0.7262 (8)1.0976 (6)0.0260 (17)
C150.3974 (11)0.6369 (9)0.7831 (6)0.0316 (19)
H150.42400.56310.74920.038*
C270.4639 (10)0.7783 (8)1.0958 (6)0.0256 (17)
C240.2584 (14)0.5976 (9)1.1172 (9)0.047 (3)
H240.34600.53991.12860.056*
C250.1003 (13)0.5593 (10)1.1192 (9)0.045 (3)
H250.07470.47511.13570.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pb10.01425 (17)0.01657 (17)0.03658 (19)−0.00057 (14)0.00282 (11)−0.00095 (13)
O110.016 (3)0.019 (3)0.041 (3)0.004 (2)0.008 (2)0.000 (2)
N120.013 (3)0.018 (3)0.037 (3)0.001 (3)0.004 (3)−0.005 (3)
N220.018 (3)0.014 (3)0.032 (3)0.000 (3)0.005 (2)0.007 (2)
O210.025 (3)0.018 (3)0.048 (3)−0.008 (3)0.004 (3)0.004 (3)
N210.006 (3)0.027 (4)0.045 (4)−0.005 (3)0.003 (3)0.008 (3)
O120.011 (3)0.027 (3)0.078 (5)−0.006 (3)0.004 (3)−0.010 (3)
O220.024 (4)0.030 (4)0.101 (6)0.012 (3)0.002 (4)0.001 (4)
N110.017 (4)0.030 (4)0.040 (4)−0.004 (3)0.003 (3)−0.012 (3)
C160.022 (4)0.028 (5)0.048 (5)0.012 (4)−0.001 (4)−0.007 (4)
C140.017 (4)0.020 (4)0.040 (4)0.000 (3)0.002 (3)−0.007 (3)
C260.019 (4)0.022 (4)0.051 (5)−0.009 (4)0.000 (4)0.008 (4)
C170.017 (4)0.016 (4)0.030 (4)0.005 (3)0.002 (3)−0.002 (3)
C130.013 (3)0.014 (3)0.027 (3)−0.002 (3)0.000 (3)−0.001 (3)
C230.017 (4)0.017 (4)0.045 (4)−0.004 (3)0.005 (3)0.007 (3)
C150.022 (4)0.033 (5)0.040 (4)0.004 (4)0.009 (3)−0.016 (4)
C270.010 (4)0.024 (4)0.044 (4)0.001 (3)0.004 (3)−0.002 (3)
C240.031 (5)0.014 (4)0.093 (8)0.005 (4)−0.008 (5)0.017 (5)
C250.028 (6)0.017 (5)0.092 (8)0.001 (4)0.010 (5)0.012 (5)

Geometric parameters (Å, °)

Pb1—O212.492 (7)O22—C271.237 (10)
Pb1—O112.569 (6)N11—C161.315 (12)
Pb1—N122.645 (7)C16—C151.405 (12)
Pb1—O21i2.662 (7)C16—H160.9300
Pb1—O11ii2.669 (6)C14—C151.338 (12)
Pb1—N222.672 (6)C14—C131.384 (11)
O11—C171.285 (10)C14—H140.9300
O11—Pb1ii2.669 (6)C26—C251.385 (13)
N12—N111.330 (10)C26—H260.9300
N12—C131.348 (9)C17—C131.493 (11)
N22—C231.312 (10)C23—C241.386 (12)
N22—N211.340 (9)C23—C271.511 (12)
O21—C271.289 (10)C15—H150.9300
O21—Pb1i2.662 (7)C24—C251.334 (14)
N21—C261.305 (11)C24—H240.9300
O12—C171.217 (10)C25—H250.9300
O21—Pb1—O11122.4 (2)N11—C16—H16119.4
O21—Pb1—N1272.1 (2)C15—C16—H16119.4
O11—Pb1—N1261.55 (19)C15—C14—C13118.4 (8)
O21—Pb1—O21i76.0 (2)C15—C14—H14120.8
O11—Pb1—O21i112.9 (2)C13—C14—H14120.8
N12—Pb1—O21i68.4 (2)N21—C26—C25121.8 (9)
O21—Pb1—O11ii114.4 (2)N21—C26—H26119.1
O11—Pb1—O11ii76.4 (2)C25—C26—H26119.1
N12—Pb1—O11ii129.6 (2)O12—C17—O11125.6 (8)
O21i—Pb1—O11ii160.5 (2)O12—C17—C13117.6 (7)
O21—Pb1—N2262.5 (2)O11—C17—C13116.8 (7)
O11—Pb1—N2271.4 (2)N12—C13—C14121.1 (7)
N12—Pb1—N2271.4 (2)N12—C13—C17115.9 (6)
O21i—Pb1—N22128.9 (2)C14—C13—C17123.0 (7)
O11ii—Pb1—N2269.7 (2)N22—C23—C24121.7 (8)
C17—O11—Pb1120.6 (5)N22—C23—C27116.8 (7)
C17—O11—Pb1ii112.3 (5)C24—C23—C27121.5 (8)
Pb1—O11—Pb1ii103.6 (2)C14—C15—C16118.9 (8)
N11—N12—C13120.1 (7)C14—C15—H15120.6
N11—N12—Pb1120.6 (5)C16—C15—H15120.6
C13—N12—Pb1117.8 (5)O22—C27—O21123.7 (8)
C23—N22—N21119.9 (7)O22—C27—C23119.8 (8)
C23—N22—Pb1116.4 (5)O21—C27—C23116.5 (7)
N21—N22—Pb1122.6 (5)C25—C24—C23118.0 (9)
C27—O21—Pb1122.4 (5)C25—C24—H24121.0
C27—O21—Pb1i111.8 (6)C23—C24—H24121.0
Pb1—O21—Pb1i104.0 (2)C24—C25—C26118.5 (9)
C26—N21—N22120.0 (8)C24—C25—H25120.8
C16—N11—N12120.4 (7)C26—C25—H25120.8
N11—C16—C15121.1 (8)

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16···O12iii0.932.353.182 (12)149
C14—H14···O21iv0.932.763.489 (10)136
C26—H26···O22v0.932.423.201 (12)142
C15—H15···O11vi0.932.403.266 (10)155
C25—H25···O12vii0.932.423.328 (12)165

Symmetry codes: (iii) x+1, y, z; (iv) x−1/2, −y+3/2, z−1/2; (v) x−1, y, z; (vi) −x+1/2, y−1/2, −z+3/2; (vii) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2247).

References

  • Ardiwinata, E. S., Craig, D. C. & Philips, D. J. (1989). Inorg. Chim. Acta, 166, 233–238.
  • Gryz, M., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, m1481–m1483.
  • Gryz, M., Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m123–m124.
  • Gryz, M., Starosta, W., Ptasiewicz-Bąk, H. & Leciejewicz, J. (2003). J. Coord. Chem.56, 1505–1511.
  • Kuma (1996). KM-4 Software Kuma Diffraction Ltd, Wrocław, Poland.
  • Kuma (2001). DATAPROC Kuma Diffraction Ltd, Wrocław, Poland.
  • Leciejewicz, J. & Starosta, W. (2009). Acta Cryst. E65, m94. [PMC free article] [PubMed]
  • Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Starosta, W. & Leciejewicz, J. (2007). Acta Cryst. E63, m1662–m1663.
  • Starosta, W. & Leciejewicz, J. (2009). Acta Cryst. E65, m1291. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography