PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m240.
Published online 2010 January 30. doi:  10.1107/S1600536809054543
PMCID: PMC2979801

Poly[diaqua­tris(μ4-isophthalato)dilanthanum(III)]

Abstract

In the title coordination polymer, [La2(C8H4O4)3(H2O)2]n, there are two independent LaIII atoms which are coordinated differently in slightly distorted penta­gonal-bipyramidal and slightly disorted bicapped trigonal-prismatic environments. The LaIII ions are bridged by μ4-isophthalate ligands, forming two-dimensional layers. In the crystal structure, these layers are connected by inter­molecular O—H(...)O hydrogen bonds into a three-dimensional network.

Related literature

For background information on lanthanide coordination polymers, see: Cheng et al. (2007 [triangle]); Dorweiler et al. (2009 [triangle]); Mondal et al. (2009 [triangle]) and for the use of multicarboxyl group ligands in this type of polymer, see: Mahata et al. (2007 [triangle]); Zhou et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m240-scheme1.jpg

Experimental

Crystal data

  • [La2(C8H4O4)3(H2O)2]
  • M r = 806.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m240-efi1.jpg
  • a = 13.3956 (12) Å
  • b = 14.4877 (8) Å
  • c = 13.5754 (11) Å
  • β = 103.998 (5)°
  • V = 2556.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.37 mm−1
  • T = 293 K
  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Rigaku Mercury diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007 [triangle]) T min = 0.717, T max = 1.000
  • 19411 measured reflections
  • 5841 independent reflections
  • 5111 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.139
  • S = 1.08
  • 5841 reflections
  • 361 parameters
  • 18 restraints
  • H-atom parameters constrained
  • Δρmax = 2.72 e Å−3
  • Δρmin = −1.33 e Å−3

Data collection: CrystalClear (Rigaku, 2007 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2004 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809054543/lh2972sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054543/lh2972Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Young Talent Fund of Fujian Province (No. 2007 F3060).

supplementary crystallographic information

Comment

Investigations of the constructions of coordination polymers based on lanthanide metals have attracted great interests not only for their diverse structures but also for their luminescent and magnetic properties (Cheng et al., 2007; Dorweiler et al., 2009; Mondal et al., 2009). Because ligands containing multicarboxyl groups can give rise to abundant coordination modes, they have been selected to build lanthanide coordination polymers (Mahata et al., 2007; Zhou et al., 2008). We report herein the crystal structure of the title La(III) compound, (I).

As shown in Fig.1, the asymmetric unit of (I) contains two independent LaIII ions, three isophthalato (ip) ligands, and two coordinated water molecules. Atom La1 is coordinated by seven O atoms in a slightly distorted pentagonal bipyramidal environment. The pentagonal plane is occupied by four oxygen atoms from four ip ligands and one oxygen atom from a water molecule, and the two apical sites are occupied by another two oxygen atoms from two ip ligands. The coordination geometry of La2 is a slightly disortoted bi-capped trigonal prism. The LaIII ions are bridged by µ4-isophthalato ligands to form two-dimensional layers (Fig. 2). In the crystal structure, these layers are connected by intermolecular O—H···O hydrogen bonds to form a three-dimensional network.

Experimental

A mixture of La2O3 (0.163 g, 0.5 mmol), isophthalic acid (0.166 g, 1 mmol) and H2O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 443 K for 7 days and then cooled to room temperature at a rate of 0.2 K h—1. The colorless crystals obtained were washed with water and dried in air (yield 16% based on La).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å, O—H = 0.85 Å, Uiso(H) = 1.2Ueq(C or O).

Figures

Fig. 1.
The asymmetric unit of (I), showing the atom-numbering scheme. H atoms are not included and displacement ellipsoids are drawn at the 30% probability level. Additional symmetry related atoms are included to complete the coordination geomtry around the ...
Fig. 2.
View of part of the two-dimensional layer of (I). H atoms are not included.

Crystal data

[La2(C8H4O4)3(H2O)2]F(000) = 1544
Mr = 806.19Dx = 2.095 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6025 reflections
a = 13.3956 (12) Åθ = 3.1–27.5°
b = 14.4877 (8) ŵ = 3.37 mm1
c = 13.5754 (11) ÅT = 293 K
β = 103.998 (5)°Prism, colorless
V = 2556.4 (3) Å30.20 × 0.15 × 0.10 mm
Z = 4

Data collection

Rigaku Mercury diffractometer5841 independent reflections
Radiation source: fine-focus sealed tube5111 reflections with I > 2σ(I)
graphiteRint = 0.042
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007)h = −17→16
Tmin = 0.717, Tmax = 1.000k = −18→18
19411 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0811P)2 + 4.3612P] where P = (Fo2 + 2Fc2)/3
5841 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 2.72 e Å3
18 restraintsΔρmin = −1.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
La10.84385 (2)0.31714 (2)0.38814 (2)0.02027 (12)
La20.61501 (2)0.06678 (2)0.32769 (2)0.02238 (12)
O10.6774 (3)0.2657 (3)0.2958 (3)0.0358 (10)
O20.5239 (4)0.2049 (3)0.2615 (4)0.0375 (11)
O30.7107 (4)0.5678 (4)0.1326 (5)0.0545 (15)
O40.5900 (4)0.6718 (3)0.1260 (5)0.0510 (14)
O50.7672 (4)0.2617 (4)0.5144 (4)0.0463 (13)
O60.6532 (4)0.1469 (4)0.4850 (4)0.0463 (13)
O70.5312 (4)0.0136 (3)0.7733 (4)0.0383 (11)
O80.5033 (4)0.1180 (3)0.8868 (3)0.0392 (11)
O90.8372 (4)0.3771 (3)0.2105 (3)0.0359 (10)
O100.8799 (4)0.4248 (3)0.0703 (4)0.0395 (11)
O110.6533 (4)0.0748 (3)0.1637 (4)0.0437 (12)
O120.7235 (4)−0.0402 (3)0.0943 (4)0.0482 (13)
O130.9519 (5)0.3449 (5)0.5562 (4)0.071 (2)
H13B1.00270.38190.57030.085*
H13A0.93120.31190.59910.085*
O140.4569 (4)0.0722 (3)0.3964 (4)0.0454 (13)
H14A0.41650.04550.34660.054*
H14B0.44650.06880.45570.054*
C10.5822 (5)0.2719 (5)0.2627 (5)0.0319 (13)
C20.6223 (5)0.5905 (5)0.1368 (5)0.0381 (15)
C30.7040 (5)0.2086 (5)0.5416 (5)0.0373 (15)
C40.5455 (5)0.0912 (5)0.8170 (5)0.0318 (13)
C50.8589 (4)0.3606 (4)0.1257 (4)0.0265 (12)
C60.7158 (6)0.0436 (5)0.1157 (5)0.0366 (15)
C70.5369 (5)0.3625 (5)0.2226 (6)0.0409 (16)
C80.5967 (5)0.4312 (4)0.1954 (6)0.0365 (15)
H8A0.66640.42010.20180.044*
C90.5563 (6)0.5166 (5)0.1589 (7)0.0497 (19)
C100.4527 (8)0.5310 (7)0.1490 (10)0.082 (3)
H10A0.42310.58640.12190.099*
C110.3917 (9)0.4641 (9)0.1789 (11)0.098 (4)
H11A0.32290.47590.17650.118*
C120.4353 (7)0.3788 (6)0.2126 (9)0.072 (3)
H12A0.39390.33240.22850.086*
C130.6907 (5)0.2169 (5)0.6486 (5)0.0353 (14)
C140.6329 (5)0.1517 (5)0.6845 (5)0.0339 (14)
H14C0.60480.10240.64310.041*
C150.6156 (5)0.1586 (5)0.7833 (5)0.0320 (13)
C160.6589 (6)0.2315 (6)0.8462 (5)0.0457 (18)
H16A0.64740.23710.91080.055*
C170.7189 (6)0.2949 (6)0.8120 (6)0.0466 (19)
H17A0.74950.34260.85460.056*
C180.7350 (6)0.2888 (5)0.7121 (6)0.0428 (16)
H18A0.77510.33270.68960.051*
C190.8584 (5)0.2627 (4)0.0888 (5)0.0320 (13)
C200.7905 (5)0.2005 (4)0.1165 (5)0.0337 (14)
H20A0.74710.22010.15640.040*
C210.7878 (5)0.1090 (5)0.0845 (6)0.0399 (16)
C220.8536 (7)0.0792 (5)0.0250 (7)0.056 (2)
H22A0.85200.01820.00330.067*
C230.9201 (7)0.1409 (5)−0.0010 (7)0.059 (2)
H23A0.96490.1210−0.03930.071*
C240.9221 (6)0.2322 (5)0.0284 (6)0.0427 (17)
H24A0.96620.27340.00780.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
La10.02440 (19)0.01671 (19)0.02177 (19)0.00019 (11)0.00959 (13)0.00025 (11)
La20.0265 (2)0.0186 (2)0.02394 (19)−0.00009 (12)0.00989 (14)0.00050 (11)
O10.033 (2)0.039 (3)0.034 (2)0.000 (2)0.0058 (19)0.001 (2)
O20.039 (3)0.024 (2)0.049 (3)−0.003 (2)0.009 (2)0.008 (2)
O30.035 (3)0.046 (3)0.083 (4)−0.002 (2)0.015 (3)0.017 (3)
O40.047 (3)0.027 (3)0.079 (4)−0.002 (2)0.016 (3)0.008 (2)
O50.051 (3)0.058 (3)0.035 (3)−0.018 (3)0.021 (2)0.001 (2)
O60.047 (3)0.058 (3)0.036 (3)−0.018 (3)0.014 (2)−0.009 (2)
O70.038 (3)0.039 (3)0.041 (3)−0.005 (2)0.015 (2)−0.002 (2)
O80.041 (3)0.048 (3)0.031 (2)−0.001 (2)0.0141 (19)−0.003 (2)
O90.040 (2)0.039 (3)0.031 (2)−0.007 (2)0.0132 (19)−0.0029 (19)
O100.056 (3)0.029 (2)0.036 (3)−0.008 (2)0.017 (2)0.0010 (19)
O110.057 (3)0.040 (3)0.043 (3)−0.011 (2)0.027 (2)−0.003 (2)
O120.060 (3)0.030 (3)0.061 (3)−0.002 (2)0.027 (3)−0.003 (2)
O130.068 (4)0.105 (5)0.035 (3)−0.049 (4)0.006 (3)0.004 (3)
O140.046 (3)0.058 (3)0.039 (3)−0.007 (2)0.024 (2)−0.013 (2)
C10.038 (3)0.031 (3)0.027 (3)−0.005 (3)0.008 (2)0.001 (2)
C20.034 (4)0.032 (4)0.047 (4)0.001 (3)0.008 (3)0.008 (3)
C30.035 (3)0.043 (4)0.036 (3)−0.007 (3)0.013 (3)−0.004 (3)
C40.025 (3)0.039 (4)0.030 (3)0.002 (3)0.004 (2)0.000 (3)
C50.025 (3)0.024 (3)0.031 (3)0.000 (2)0.008 (2)0.004 (2)
C60.049 (4)0.031 (3)0.034 (3)−0.003 (3)0.016 (3)0.000 (3)
C70.033 (3)0.029 (4)0.057 (4)−0.004 (3)0.005 (3)0.006 (3)
C80.032 (3)0.033 (4)0.046 (4)−0.001 (3)0.012 (3)0.005 (3)
C90.034 (4)0.035 (4)0.077 (6)0.003 (3)0.009 (4)0.011 (4)
C100.055 (5)0.046 (5)0.149 (8)0.009 (4)0.029 (5)0.036 (5)
C110.060 (6)0.079 (6)0.160 (9)0.010 (5)0.034 (6)0.044 (6)
C120.051 (5)0.041 (4)0.127 (7)−0.003 (4)0.029 (5)0.023 (5)
C130.037 (3)0.041 (4)0.032 (3)−0.007 (3)0.017 (3)−0.006 (3)
C140.033 (3)0.040 (4)0.032 (3)−0.004 (3)0.012 (2)−0.003 (3)
C150.031 (3)0.039 (4)0.028 (3)−0.002 (3)0.011 (2)−0.001 (3)
C160.052 (4)0.057 (5)0.029 (3)−0.017 (4)0.012 (3)−0.011 (3)
C170.046 (4)0.055 (5)0.045 (4)−0.026 (4)0.023 (3)−0.022 (4)
C180.046 (4)0.042 (4)0.045 (4)−0.008 (3)0.019 (3)−0.004 (3)
C190.036 (3)0.027 (3)0.034 (3)0.000 (3)0.011 (3)−0.001 (3)
C200.044 (4)0.026 (3)0.034 (3)−0.006 (3)0.017 (3)0.002 (3)
C210.043 (4)0.033 (4)0.050 (4)−0.008 (3)0.022 (3)−0.004 (3)
C220.073 (6)0.032 (4)0.078 (6)−0.013 (4)0.049 (5)−0.005 (4)
C230.081 (6)0.034 (4)0.083 (6)−0.006 (4)0.061 (5)−0.012 (4)
C240.044 (4)0.036 (4)0.055 (4)−0.004 (3)0.027 (3)−0.002 (3)

Geometric parameters (Å, °)

La1—O12i2.291 (5)C1—C71.492 (9)
La1—O4ii2.310 (5)C2—C91.465 (10)
La1—O8iii2.338 (5)C3—C131.510 (9)
La1—O52.343 (5)C4—C151.500 (9)
La1—O12.396 (4)C5—C191.504 (9)
La1—O132.422 (5)C5—La2i3.056 (6)
La1—O92.545 (4)C6—C211.486 (10)
La2—O3ii2.266 (5)C7—C121.356 (11)
La2—O62.376 (5)C7—C81.383 (9)
La2—O22.402 (4)C8—C91.392 (10)
La2—O7iv2.403 (5)C8—H8A0.9300
La2—O112.405 (5)C9—C101.377 (12)
La2—O10ii2.471 (5)C10—C111.391 (14)
La2—O142.514 (5)C10—H10A0.9300
La2—O9ii2.897 (5)C11—C121.395 (14)
O1—C11.250 (8)C11—H11A0.9300
O2—C11.243 (8)C12—H12A0.9300
O3—C21.244 (9)C13—C141.382 (9)
O3—La2i2.266 (5)C13—C181.391 (10)
O4—C21.251 (8)C14—C151.418 (9)
O4—La1i2.310 (5)C14—H14C0.9300
O5—C31.263 (8)C15—C161.394 (10)
O6—C31.264 (8)C16—C171.373 (10)
O7—C41.265 (8)C16—H16A0.9300
O7—La2iv2.403 (5)C17—C181.426 (10)
O8—C41.276 (8)C17—H17A0.9300
O8—La1v2.338 (5)C18—H18A0.9300
O9—C51.276 (7)C19—C241.391 (9)
O9—La2i2.897 (5)C19—C201.395 (9)
O10—C51.269 (7)C20—C211.393 (9)
O10—La2i2.471 (5)C20—H20A0.9300
O11—C61.262 (8)C21—C221.400 (10)
O12—C61.258 (8)C22—C231.367 (10)
O12—La1ii2.291 (5)C22—H22A0.9300
O13—H13B0.8500C23—C241.379 (11)
O13—H13A0.8501C23—H23A0.9300
O14—H14A0.8500C24—H24A0.9300
O14—H14B0.8501
O12i—La1—O4ii178.4 (2)C7—C1—La2164.5 (5)
O12i—La1—O8iii91.26 (18)O3—C2—O4123.4 (7)
O4ii—La1—O8iii89.77 (18)O3—C2—C9116.3 (6)
O12i—La1—O588.85 (19)O4—C2—C9120.3 (7)
O4ii—La1—O589.6 (2)O5—C3—O6123.5 (6)
O8iii—La1—O5134.94 (17)O5—C3—C13118.4 (6)
O12i—La1—O189.71 (19)O6—C3—C13118.0 (6)
O4ii—La1—O190.01 (18)O7—C4—O8125.1 (6)
O8iii—La1—O1148.99 (15)O7—C4—C15118.1 (6)
O5—La1—O176.07 (17)O8—C4—C15116.8 (6)
O12i—La1—O1385.0 (2)O10—C5—O9121.9 (6)
O4ii—La1—O1394.3 (2)O10—C5—C19118.6 (5)
O8iii—La1—O1366.51 (17)O9—C5—C19119.5 (5)
O5—La1—O1368.62 (19)O10—C5—La2i51.4 (3)
O1—La1—O13144.36 (18)O9—C5—La2i70.7 (3)
O12i—La1—O982.32 (17)C19—C5—La2i169.2 (4)
O4ii—La1—O999.13 (19)O12—C6—O11124.5 (6)
O8iii—La1—O971.23 (15)O12—C6—C21117.0 (6)
O5—La1—O9152.80 (17)O11—C6—C21118.5 (6)
O1—La1—O978.20 (15)C12—C7—C8118.7 (7)
O13—La1—O9135.42 (17)C12—C7—C1120.0 (7)
O3ii—La2—O678.3 (2)C8—C7—C1121.4 (6)
O3ii—La2—O2119.00 (18)C7—C8—C9122.3 (7)
O6—La2—O284.73 (19)C7—C8—H8A118.9
O3ii—La2—O7iv142.19 (18)C9—C8—H8A118.9
O6—La2—O7iv135.92 (17)C10—C9—C8117.8 (7)
O2—La2—O7iv85.41 (16)C10—C9—C2120.8 (7)
O3ii—La2—O1177.4 (2)C8—C9—C2121.4 (7)
O6—La2—O11139.53 (17)C9—C10—C11121.0 (9)
O2—La2—O1179.43 (17)C9—C10—H10A119.5
O7iv—La2—O1179.77 (17)C11—C10—H10A119.5
O3ii—La2—O10ii89.1 (2)C10—C11—C12119.0 (10)
O6—La2—O10ii86.12 (17)C10—C11—H11A120.5
O2—La2—O10ii147.73 (16)C12—C11—H11A120.5
O7iv—La2—O10ii79.90 (17)C7—C12—C11121.2 (9)
O11—La2—O10ii125.15 (16)C7—C12—H12A119.4
O3ii—La2—O14145.5 (2)C11—C12—H12A119.4
O6—La2—O1470.65 (17)C14—C13—C18119.0 (6)
O2—La2—O1473.46 (17)C14—C13—C3119.4 (6)
O7iv—La2—O1465.34 (16)C18—C13—C3121.6 (6)
O11—La2—O14136.85 (18)C13—C14—C15121.3 (6)
O10ii—La2—O1474.30 (17)C13—C14—H14C119.4
O3ii—La2—O9ii77.81 (16)C15—C14—H14C119.4
O6—La2—O9ii128.00 (17)C16—C15—C14119.6 (6)
O2—La2—O9ii146.91 (15)C16—C15—C4120.3 (6)
O7iv—La2—O9ii67.88 (15)C14—C15—C4120.0 (6)
O11—La2—O9ii76.96 (15)C17—C16—C15119.3 (7)
O10ii—La2—O9ii48.19 (14)C17—C16—H16A120.3
O14—La2—O9ii109.79 (15)C15—C16—H16A120.3
C1—O1—La1154.9 (4)C16—C17—C18121.1 (7)
C1—O2—La2112.7 (4)C16—C17—H17A119.5
C2—O3—La2i158.2 (6)C18—C17—H17A119.5
C2—O4—La1i137.7 (5)C13—C18—C17119.7 (7)
C3—O5—La1150.0 (5)C13—C18—H18A120.1
C3—O6—La2149.2 (5)C17—C18—H18A120.1
C4—O7—La2iv135.1 (4)C24—C19—C20119.2 (6)
C4—O8—La1v134.3 (4)C24—C19—C5122.8 (6)
C5—O9—La1145.9 (4)C20—C19—C5118.1 (6)
C5—O9—La2i84.7 (3)C21—C20—C19120.0 (6)
La1—O9—La2i122.32 (17)C21—C20—H20A120.0
C5—O10—La2i105.0 (4)C19—C20—H20A120.0
C6—O11—La2141.0 (5)C20—C21—C22120.1 (6)
C6—O12—La1ii142.2 (5)C20—C21—C6119.2 (6)
La1—O13—H13B125.4C22—C21—C6120.7 (6)
La1—O13—H13A109.3C23—C22—C21119.1 (7)
H13B—O13—H13A125.2C23—C22—H22A120.4
La2—O14—H14A96.9C21—C22—H22A120.4
La2—O14—H14B134.0C22—C23—C24121.4 (7)
H14A—O14—H14B120.6C22—C23—H23A119.3
O2—C1—O1122.1 (6)C24—C23—H23A119.3
O2—C1—C7118.9 (6)C23—C24—C19120.2 (7)
O1—C1—C7119.0 (6)C23—C24—H24A119.9
O2—C1—La245.6 (3)C19—C24—H24A119.9
O1—C1—La276.5 (4)

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x+1/2, −y+1/2, z−1/2; (iv) −x+1, −y, −z+1; (v) x−1/2, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O13—H13A···O2vi0.852.272.814 (8)122
O13—H13B···O11vi0.852.202.976 (8)152
O14—H14B···O10v0.851.972.795 (8)162
O14—H14A···O7iv0.852.102.656 (8)122

Symmetry codes: (vi) x+1/2, −y+1/2, z+1/2; (v) x−1/2, −y+1/2, z+1/2; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2972).

References

  • Brandenburg, K. (2004). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Cheng, J.-W., Zheng, S.-T., Ma, E. & Yang, G.-Y. (2007). Inorg. Chem.46, 10534–10538. [PubMed]
  • Dorweiler, J. D., Nemykin, V. N., Ley, A. N., Pike, R. D. & Berry, S. M. (2009). Inorg. Chem.48, 9365–9376. [PubMed]
  • Mahata, P., Ramya, K. V. & Natarajan, S. (2007). Dalton Trans. pp. 4017–4026. [PubMed]
  • Mondal, K. C., Sengupta, O., Dutta, P., Seehra, M., Nayak, S. K. & Mukherjee, P. S. (2009). Inorg. Chim. Acta, 362, 1913–1917.
  • Rigaku (2007). CrystalClear Rigaku Corporation, Akishima, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhou, R.-Z., Cui, X.-B., Song, J.-F., Xu, X.-Y., Xu, J.-Q. & Wang, T.-G. (2008). J. Solid State Chem.181, 2099–2107.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography