PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m202.
Published online 2010 January 27. doi:  10.1107/S160053681000262X
PMCID: PMC2979794

Methano­ldioxido{1-[(2RS)-(2-oxidoprop­yl)iminometh­yl]-2-naphtholato}molybdenium(VI)

Abstract

Crystals of the title compound, [Mo(C14H13NO2)O2(CH4O)], were obtained by recrystallization from methanol. The MoVI atom is coordinated by two oxide O atoms and by two O atoms and one N atom of the tridentate 1-[(2-oxidoprop­yl)iminometh­yl]-2-naphtholate Schiff base ligand. The coordination sphere is completed by the O atom of a methanol mol­ecule, yielding a distorted octa­hedron. O—H(...)O hydrogen bonding yields centrosymmetric dimers.

Related literature

For related structures with O= MoVI=O units and for the synthesis, see: Arnaiz et al. (2000 [triangle]); Holm et al. (1996 [triangle]); Syamal & Maurya (1989 [triangle]). For the prperties of related compounds, see: Arnold et al. (2001 [triangle]); Bagherzadeh et al. (2009 [triangle]); Bruno et al. (2006 [triangle]); Holm (1987 [triangle]); Maurya et al. (1997 [triangle]); Schurig & Betschinger (1992 [triangle]); Sheikhshoaie et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m202-scheme1.jpg

Experimental

Crystal data

  • [Mo(C14H13NO2)O2(CH4O)]
  • M r = 387.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m202-efi1.jpg
  • a = 7.9064 (5) Å
  • b = 15.078 (1) Å
  • c = 12.6796 (8) Å
  • β = 93.959 (1)°
  • V = 1507.96 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.89 mm−1
  • T = 100 K
  • 0.19 × 0.16 × 0.16 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.849, T max = 0.870
  • 18948 measured reflections
  • 4393 independent reflections
  • 3951 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.056
  • S = 1.01
  • 4393 reflections
  • 202 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000262X/fi2095sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000262X/fi2095Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Shahid Bahonar University of Kerman for financial support of this work.

supplementary crystallographic information

Comment

Transition metal oxo compounds containing Schiff base ligands have been in the focus of scientific interest for many years. These compounds are involved in oxygen transfer chemistry in both biological and industrial processes (Maurya et al., 1997), effective catalysts for epoxidation (Bagherzadeh et al., 2009; Holm, 1987; Schurig & Betschinger, 1992; Arnold et al., 2001). The success of molybdenum(VI) complexes in reactions to produce racemic epoxides led to the belief that some derivatives of these complexes could be applied as chiral catalysts (Bruno et al., 2006), and oxidation catalysis (Sheikhshoaie et al., 2009). Continuing our interest in the structural chemistry of dioxomolybdenum(VI) Schiff base complexes, we have synthesized and structurally characterized the title complex.

The molecular structure of the title complex is illustrated in Figure 1. The MoVI ion is in a distored octahedral environment being coordinated by two oxido O atoms (O4 and O3), three atoms (two oxygen and one nitrogen atoms) of the tridentate Schiff base ligand and one oxygen atom from methanol. The oxido-O atoms are in cis position with short Mo=O bonds (1.7001 (12) and 1.7140 (12)Å, respectively). The OH group of the methanol molecule acts as H bond donor, yielding centrosymmetric dimers (Fig. 2).

Experimental

To a solution of 0.229 mg (1 mmol) of tridentate Schiff base ligand 1-((E)-(2-hydroxypropylimino)methyl)naphthalen-2-ol) in 15 ml dry methanol was added a solution of 0.327 mg (1 mmol) of MoO2(acac)2 in 10 ml dry methanol, and refluxed for an additional 2 h. {[(1-amino-2-hydroxypropane)nitilomethylidyne-(2-naphthalato)]-dioxidomolybdenum(VI)(Methanol)} was obtained as a yellow microcrystalline precipitate. The precipitate was filtered off, washed with 5 ml absolute ethanol. Small yellow crystals formed upon recrystallisation from methanol.

Refinement

The hydrogen atoms of OH group was found in difference Fourier synthesis. The H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model, the Uiso(H) parameters were fixed to 1.2 Ueq(Ci), for methyl groups to 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded

Figures

Fig. 1.
The molecular structure of the title compound. Thermal ellispoids at the 50% probability level.
Fig. 2.
The hydrogen bonding pattern in the title compound yielding centrosymmetric dimers. H bonds indicated by dashed lines. Moiety to the left generated by (i) 1–x, –y, 1–z.

Crystal data

[Mo(C14H13NO2)O2(CH4O)]F(000) = 784
Mr = 387.24Dx = 1.706 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 211 reflections
a = 7.9064 (5) Åθ = 3–30°
b = 15.078 (1) ŵ = 0.89 mm1
c = 12.6796 (8) ÅT = 100 K
β = 93.959 (1)°Prism, pale yellow
V = 1507.96 (17) Å30.19 × 0.16 × 0.16 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer4393 independent reflections
Radiation source: fine-focus sealed tube3951 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.849, Tmax = 0.870k = −21→21
18948 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0248P)2 + 1.35P] where P = (Fo2 + 2Fc2)/3
4393 reflections(Δ/σ)max = 0.008
202 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.65 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mo10.530764 (16)0.118564 (9)0.344992 (10)0.01228 (4)
O10.58279 (14)0.07661 (8)0.20452 (9)0.0154 (2)
O20.58637 (14)0.12750 (7)0.49712 (9)0.0149 (2)
O30.51942 (15)0.22791 (8)0.31257 (10)0.0203 (2)
O40.32656 (14)0.08304 (9)0.35495 (10)0.0197 (2)
O50.60141 (16)−0.02912 (8)0.38095 (10)0.0191 (2)
H5O0.5424−0.06120.41950.029 (6)*
N10.81591 (16)0.11919 (9)0.36213 (10)0.0132 (2)
C10.86943 (19)0.12061 (10)0.17666 (12)0.0122 (3)
C20.70542 (19)0.09463 (10)0.14066 (12)0.0129 (3)
C30.6632 (2)0.08250 (11)0.03095 (13)0.0157 (3)
H3A0.55100.06600.00720.019*
C40.7821 (2)0.09422 (11)−0.04064 (13)0.0178 (3)
H4A0.75310.0827−0.11330.021*
C51.0683 (2)0.14082 (12)−0.08389 (13)0.0197 (3)
H5A1.03910.1293−0.15650.024*
C61.2258 (2)0.17414 (12)−0.05370 (14)0.0219 (3)
H6A1.30490.1859−0.10510.026*
C71.2691 (2)0.19074 (11)0.05381 (14)0.0191 (3)
H7A1.37770.21430.07480.023*
C81.15642 (19)0.17334 (11)0.12916 (13)0.0156 (3)
H8A1.18830.18500.20140.019*
C90.9488 (2)0.12333 (11)−0.00845 (12)0.0152 (3)
C100.99294 (19)0.13813 (10)0.10045 (12)0.0126 (3)
C110.91962 (19)0.12357 (10)0.28859 (12)0.0138 (3)
H11A1.03700.12910.30900.017*
C120.8805 (2)0.11752 (12)0.47316 (12)0.0180 (3)
H12A0.98980.14960.48240.022*
H12B0.89830.05560.49750.022*
C130.7473 (2)0.16280 (11)0.53555 (13)0.0171 (3)
H13A0.74930.22800.52150.021*
C140.7770 (2)0.14687 (12)0.65327 (13)0.0207 (3)
H14A0.68810.17650.69040.031*
H14B0.88790.17070.67820.031*
H14C0.77410.08300.66750.031*
C150.6958 (2)−0.08893 (12)0.32155 (16)0.0254 (4)
H15A0.7596−0.12960.36970.038*
H15B0.7749−0.05550.28050.038*
H15C0.6182−0.12300.27350.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mo10.00938 (6)0.01464 (7)0.01329 (7)0.00158 (5)0.00413 (4)0.00367 (5)
O10.0115 (5)0.0216 (6)0.0134 (5)−0.0023 (4)0.0032 (4)0.0024 (4)
O20.0145 (5)0.0171 (5)0.0139 (5)−0.0004 (4)0.0057 (4)0.0014 (4)
O30.0199 (6)0.0187 (6)0.0232 (6)0.0048 (5)0.0084 (5)0.0080 (5)
O40.0122 (5)0.0270 (6)0.0203 (6)−0.0003 (5)0.0038 (4)0.0053 (5)
O50.0249 (6)0.0135 (5)0.0205 (6)0.0016 (5)0.0130 (5)0.0023 (4)
N10.0117 (6)0.0159 (6)0.0121 (6)0.0016 (5)0.0018 (4)0.0015 (5)
C10.0120 (6)0.0139 (7)0.0110 (6)0.0004 (5)0.0033 (5)0.0007 (5)
C20.0122 (6)0.0129 (7)0.0138 (7)0.0002 (5)0.0040 (5)0.0010 (5)
C30.0150 (7)0.0166 (7)0.0155 (7)−0.0029 (6)0.0014 (5)−0.0012 (6)
C40.0195 (8)0.0217 (8)0.0125 (7)−0.0011 (6)0.0024 (6)−0.0024 (6)
C50.0208 (8)0.0255 (8)0.0137 (7)0.0009 (6)0.0073 (6)0.0007 (6)
C60.0201 (8)0.0260 (9)0.0212 (8)−0.0014 (7)0.0118 (6)0.0013 (7)
C70.0136 (7)0.0208 (8)0.0238 (8)−0.0018 (6)0.0074 (6)0.0007 (6)
C80.0127 (7)0.0180 (7)0.0164 (7)−0.0005 (5)0.0032 (6)0.0007 (6)
C90.0159 (7)0.0169 (7)0.0133 (7)0.0008 (6)0.0048 (5)0.0001 (5)
C100.0129 (6)0.0120 (7)0.0132 (7)0.0006 (5)0.0043 (5)0.0015 (5)
C110.0117 (6)0.0159 (7)0.0139 (7)0.0003 (5)0.0016 (5)0.0010 (5)
C120.0143 (7)0.0290 (8)0.0109 (7)0.0033 (6)0.0019 (5)−0.0001 (6)
C130.0181 (7)0.0171 (8)0.0165 (7)−0.0018 (6)0.0044 (6)−0.0002 (6)
C140.0238 (8)0.0252 (8)0.0135 (7)−0.0032 (7)0.0038 (6)−0.0015 (6)
C150.0293 (9)0.0179 (8)0.0310 (10)0.0028 (7)0.0161 (8)−0.0015 (7)

Geometric parameters (Å, °)

Mo1—O31.7001 (12)C5—C91.415 (2)
Mo1—O41.7140 (12)C5—H5A0.9500
Mo1—O21.9533 (11)C6—C71.405 (3)
Mo1—O11.9604 (11)C6—H6A0.9500
Mo1—N12.2500 (13)C7—C81.376 (2)
Mo1—O52.3331 (12)C7—H7A0.9500
O1—C21.3334 (18)C8—C101.421 (2)
O2—C131.433 (2)C8—H8A0.9500
O5—C151.420 (2)C9—C101.418 (2)
O5—H5O0.8499C11—H11A0.9500
N1—C111.2852 (19)C12—C131.522 (2)
N1—C121.464 (2)C12—H12A0.9900
C1—C21.401 (2)C12—H12B0.9900
C1—C101.445 (2)C13—C141.514 (2)
C1—C111.448 (2)C13—H13A1.0000
C2—C31.420 (2)C14—H14A0.9800
C3—C41.362 (2)C14—H14B0.9800
C3—H3A0.9500C14—H14C0.9800
C4—C91.422 (2)C15—H15A0.9800
C4—H4A0.9500C15—H15B0.9800
C5—C61.373 (2)C15—H15C0.9800
O3—Mo1—O4106.65 (6)C7—C6—H6A120.3
O3—Mo1—O2100.16 (6)C8—C7—C6120.91 (16)
O4—Mo1—O295.61 (5)C8—C7—H7A119.5
O3—Mo1—O195.98 (5)C6—C7—H7A119.5
O4—Mo1—O1102.94 (5)C7—C8—C10120.96 (15)
O2—Mo1—O1150.75 (5)C7—C8—H8A119.5
O3—Mo1—N193.16 (5)C10—C8—H8A119.5
O4—Mo1—N1159.54 (5)C5—C9—C10119.88 (15)
O2—Mo1—N175.44 (5)C5—C9—C4120.82 (15)
O1—Mo1—N179.48 (5)C10—C9—C4119.25 (14)
O3—Mo1—O5168.75 (5)C9—C10—C8117.79 (13)
O4—Mo1—O584.34 (5)C9—C10—C1119.36 (14)
O2—Mo1—O580.69 (4)C8—C10—C1122.80 (14)
O1—Mo1—O578.88 (4)N1—C11—C1124.35 (14)
N1—Mo1—O576.13 (5)N1—C11—H11A117.8
C2—O1—Mo1133.87 (10)C1—C11—H11A117.8
C13—O2—Mo1119.69 (9)N1—C12—C13106.52 (13)
C15—O5—Mo1129.06 (10)N1—C12—H12A110.4
C15—O5—H5O105.9C13—C12—H12A110.4
Mo1—O5—H5O121.4N1—C12—H12B110.4
C11—N1—C12120.05 (13)C13—C12—H12B110.4
C11—N1—Mo1127.98 (11)H12A—C12—H12B108.6
C12—N1—Mo1111.93 (9)O2—C13—C14110.47 (13)
C2—C1—C10119.11 (14)O2—C13—C12106.65 (13)
C2—C1—C11120.87 (13)C14—C13—C12112.07 (14)
C10—C1—C11119.86 (13)O2—C13—H13A109.2
O1—C2—C1123.69 (14)C14—C13—H13A109.2
O1—C2—C3115.93 (14)C12—C13—H13A109.2
C1—C2—C3120.34 (14)C13—C14—H14A109.5
C4—C3—C2120.66 (15)C13—C14—H14B109.5
C4—C3—H3A119.7H14A—C14—H14B109.5
C2—C3—H3A119.7C13—C14—H14C109.5
C3—C4—C9121.14 (15)H14A—C14—H14C109.5
C3—C4—H4A119.4H14B—C14—H14C109.5
C9—C4—H4A119.4O5—C15—H15A109.5
C6—C5—C9121.00 (16)O5—C15—H15B109.5
C6—C5—H5A119.5H15A—C15—H15B109.5
C9—C5—H5A119.5O5—C15—H15C109.5
C5—C6—C7119.43 (15)H15A—C15—H15C109.5
C5—C6—H6A120.3H15B—C15—H15C109.5
O3—Mo1—O1—C257.22 (14)O1—C2—C3—C4−176.28 (15)
O4—Mo1—O1—C2165.86 (14)C1—C2—C3—C41.3 (2)
O2—Mo1—O1—C2−66.15 (18)C2—C3—C4—C9−3.3 (3)
N1—Mo1—O1—C2−34.90 (14)C9—C5—C6—C70.3 (3)
O5—Mo1—O1—C2−112.66 (14)C5—C6—C7—C80.6 (3)
O3—Mo1—O2—C13−66.97 (11)C6—C7—C8—C100.0 (3)
O4—Mo1—O2—C13−175.04 (11)C6—C5—C9—C10−1.6 (3)
O1—Mo1—O2—C1355.48 (15)C6—C5—C9—C4175.93 (17)
N1—Mo1—O2—C1323.68 (11)C3—C4—C9—C5−175.91 (16)
O5—Mo1—O2—C13101.65 (11)C3—C4—C9—C101.6 (2)
O3—Mo1—O5—C15−43.8 (3)C5—C9—C10—C82.1 (2)
O4—Mo1—O5—C15124.28 (15)C4—C9—C10—C8−175.50 (15)
O2—Mo1—O5—C15−139.07 (15)C5—C9—C10—C1179.57 (15)
O1—Mo1—O5—C1519.88 (15)C4—C9—C10—C12.0 (2)
N1—Mo1—O5—C15−61.89 (15)C7—C8—C10—C9−1.3 (2)
O3—Mo1—N1—C11−72.74 (14)C7—C8—C10—C1−178.68 (15)
O4—Mo1—N1—C11121.60 (18)C2—C1—C10—C9−3.9 (2)
O2—Mo1—N1—C11−172.43 (14)C11—C1—C10—C9171.46 (14)
O1—Mo1—N1—C1122.76 (13)C2—C1—C10—C8173.43 (15)
O5—Mo1—N1—C11103.77 (14)C11—C1—C10—C8−11.2 (2)
O3—Mo1—N1—C12104.86 (11)C12—N1—C11—C1176.40 (15)
O4—Mo1—N1—C12−60.8 (2)Mo1—N1—C11—C1−6.2 (2)
O2—Mo1—N1—C125.18 (10)C2—C1—C11—N1−13.1 (2)
O1—Mo1—N1—C12−159.63 (11)C10—C1—C11—N1171.56 (15)
O5—Mo1—N1—C12−78.62 (11)C11—N1—C12—C13148.93 (15)
Mo1—O1—C2—C129.3 (2)Mo1—N1—C12—C13−28.89 (15)
Mo1—O1—C2—C3−153.24 (12)Mo1—O2—C13—C14−168.83 (10)
C10—C1—C2—O1179.71 (14)Mo1—O2—C13—C12−46.80 (15)
C11—C1—C2—O14.4 (2)N1—C12—C13—O245.45 (16)
C10—C1—C2—C32.3 (2)N1—C12—C13—C14166.45 (13)
C11—C1—C2—C3−173.00 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5O···O2i0.851.822.6667 (16)179

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2095).

References

  • Arnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141–2147.
  • Arnold, U., Serpa da Cruz, R., Mandelli, D. & Schuchardt, U. (2001). J. Mol. Catal. A, 165, 149-158.
  • Bagherzadeh, M., Tahsini, L., Latifi, R. & Woob, L. K. (2009). Inorg. Chim. Acta, 362, 3698–3702.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, S. M., Monteiro, B., Balula, M. S., Pedro, F. M., Abrantes, M., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Kuhn, F. E. & Goncalves, I. S. (2006). J. Mol. Catal. A Chem.260, 11–18.
  • Holm, R. H. (1987). Chem. Rev.87, 1401–1449.
  • Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev.96, 2239–2314. [PubMed]
  • Maurya, R. C., Mishra, D. D., Rao, S. N., Verma, R. & Rao, N. N. (1997). Indian J. Chem. Sect. A, 36, 599–601.
  • Schurig, V. & Betschinger, F. (1992). Chem. Rev 92, 873–888.
  • Sheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733-738.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Syamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev.95, 183–238.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography