PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o457–o458.
Published online 2010 January 27. doi:  10.1107/S1600536810002771
PMCID: PMC2979791

(E)-1-(3-Nitro­phen­yl)-2-({5-[(1E)-2-(3-nitro­phen­yl)hydrazin-1-ylidenemeth­yl]-2-thien­yl}methyl­idene)hydrazine

Abstract

The title mol­ecule, C18H14N6O4S, adopts a U-shape with the aromatic groups lying syn and oriented in the same direction as the thio­phene S atom. Twists away from planarity are evident with the maximum deviation being found for a terminal nitro group: C/C/N/O = 19.0 (3)°. The conformation about each of the C=N bonds is E. In the crystal, centrosymmetrically related mol­ecules are connected via N—H(...)Onitro hydrogen bonds, forming 14-membered {(...)HNC3NO}2 synthons. These are linked into layers via C—H(...)Onitro inter­actions with the primary inter­actions between layers being of the type C—H(...)π, where the π-system is the thio­phene ring.

Related literature

For the preparation of hydrazones of thio­phene­carbaldehydes, see: Kwon et al. (2009 [triangle]); Wardell et al. (2007 [triangle]); Vaysse & Pastour (1964 [triangle]). For general uses of 2-substituted-thio­phenes, see: Campaigne (1984 [triangle]). For their specific uses as materials, see: Michaleviciute et al. (2007 [triangle], 2009 [triangle]); Kwon et al. (2009 [triangle]). For their specific uses as pharmacological agents, see: Kleemann et al. (2006 [triangle]); Sonar & Crooks (2009 [triangle]); Mellado et al. (2009 [triangle]); Satyanarayana et al. (2008 [triangle]); Lourenço et al. (2007 [triangle]). For related structures, see: Wardell et al. (2007 [triangle], 2010 [triangle]); Ferreira et al. (2009 [triangle]); Nogueira et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o457-scheme1.jpg

Experimental

Crystal data

  • C18H14N6O4S
  • M r = 410.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o457-efi1.jpg
  • a = 11.1790 (5) Å
  • b = 20.6993 (9) Å
  • c = 8.0334 (2) Å
  • β = 100.513 (2)°
  • V = 1827.70 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 120 K
  • 0.62 × 0.10 × 0.06 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.668, T max = 0.746
  • 21780 measured reflections
  • 4183 independent reflections
  • 3001 reflections with I > 2σ(I)
  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.133
  • S = 1.08
  • 4183 reflections
  • 268 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002771/hg2635sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002771/hg2635Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

The preparation of hydrazonederivatives of thiophenecarbaldehydes is well documented (Kwon, et al. 2009; Wardell et al., 2007; Vaysse & Pastour, 1964). As a continuation of structural studies of this class of compound (Wardell et al., 2007; Ferreira et al., 2009; Nogueira et al., 2010; Wardell et al., 2010), the title compound (I) was synthesised and structurally investigated. 2-Substituted thiophenes in general have various uses, for example as dyestuffs, flavour agents, drugs, and inhibitors (Campaigne, 1984). Thiophenes are present in many natural and synthetic products with a wide range of pharmacological activities (Kleemann et al., 2006; Sonar & Crooks, 2009; Mellado et al., 2009; Satyanarayana et al., 2008; Lourenço et al., 2007). Specifically, hydrazone derivatives of thiophene have found uses in optoelectronic applications (Michaleviciute et al., 2007), as optical non-linear materials (Kwon et al., 2009), and as hole transporting materials (Michaleviciute et al., 2009).

The overall molecular conformation in (I) is U-shaped as the two aromatic residues lie to the same side of the molecule and are syn, being orientated in the same direction as the thiophene-S atom, Fig. 1. Twists from planarity in the molecule are evident in each of the side-arms, i.e. about the N2–C6 and N4–N5 bonds; the N1/N2/C6/C7 and C12/N4/N5/C13 torsion angles are 168.57 (18) and -170.79 (19) °, respectively. In addition, the values of the C7/C8/N3/O1 and C14/C14/N6/O3 torsion angles of -161.0 (2) and 164.4 (2) °, respectively, indicate each of the nitro groups is twisted out of the plane of the benzene ring to which it is bonded. The conformation about each of the C5═N1 [1.288 (3) Å] and C12═N4 [1.285 (3) Å] double bonds is E.

In the crystal packing, centrosymmetrically related molecules associate via NH···Onitro hydrogen bonds to result in the formation of a 14-membered {···HNC3NO}2 synthon, Table 1. The dimeric aggregates are linked into a supramolecular chain along the c axis via CH···Onitro interactions, Table 1 and Fig. 2. The chains in turn are linked into layers in the ac plane via further CH···Onitro interactions, Table 1. The layers thus formed stack along the b axis with the primary interactions between them being of the type C–H···π where the π-system is the thiophene ring [C12–H···ring centroid(S1,C1–C4)i = 2.58 Å, C12···ring centroidi = 3.323 (2) Å with an angle subtended at H = 135 ° for symmetry operation i: x, 3/2-y, -1/2+z]. The second N5-amine H does not participate in a formal hydrogen bond. It is noted that the N4–N5—H residues lie in the interlayer region and are in relative close proximity [e.g. N5–H···N4ii = 2.87 Å] but steric constraints preclude a closer approach of these groups to allow a hydrogen bonding interaction.

Experimental

Solutions of 3-nitrophenylhydrazine.hydrochloride (0.38 g, 2 mmol) in EtOH (10 ml) and 2,5-thiophenedicarbaldehyde (0.14 g, 1 mmol) in EtOH (10 ml) were mixed. The reaction mixture was refluxed for 1 h, and rotary evaporated. The solid residue was recrystallised twice from aq. EtOH (v:v 1:2), m.p. 497-479 K. 1H NMR (400 MHz, DMSO-d6): δ 7.26 (s,2H), 7.41 (dd, 2H, J = 1 & 8.1 Hz), 7.51 (t,2H, J = 8.0 Hz), 7.59 (dd, 2H, J = 1.3 & 8.0 Hz), 7.79 (t, 2H, 2.0 Hz), 8.10 (s, 2H), 10.91(s, 2H) p.p.m. 13C (100 MHz, DMSO-d6): δ 105.7, 113.10, 118.2, 128.5, 130.5, 134.3, 140.1, 145.9, 148.8 p.p.m.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from a difference map and refined with Uiso(H) = 1.5Ueq(N).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
Fig. 2.
A view of the supramolecular chain in (I) whereby centrosymmetrically related dimeric aggregates, held together by N–H···Onitro hydrogen bonds (blue dashed bonds), are linked via C–H···Onitro ...
Fig. 3.
View of the stacking of layers in (I) with the central layer highlighted by a superimposed space filling representation. The N–H···O and C–H···O interactions are shown as blue and orange ...

Crystal data

C18H14N6O4SF(000) = 848
Mr = 410.41Dx = 1.492 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13699 reflections
a = 11.1790 (5) Åθ = 2.9–27.5°
b = 20.6993 (9) ŵ = 0.22 mm1
c = 8.0334 (2) ÅT = 120 K
β = 100.513 (2)°Rod, red
V = 1827.70 (12) Å30.62 × 0.10 × 0.06 mm
Z = 4

Data collection

KappaCCD area-detector diffractometer4183 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode3001 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.071
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
[var phi] and ω scansh = −14→14
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −26→26
Tmin = 0.668, Tmax = 0.746l = −10→9
21780 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0678P)2 + 0.3581P] where P = (Fo2 + 2Fc2)/3
4183 reflections(Δ/σ)max = 0.001
268 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.51694 (5)0.64771 (3)0.10731 (6)0.01767 (15)
O10.86026 (16)0.47833 (10)1.1894 (2)0.0440 (5)
O20.66466 (16)0.47631 (9)1.16581 (19)0.0344 (4)
O31.09960 (18)0.66615 (11)−0.6358 (3)0.0553 (6)
O40.91528 (19)0.66409 (11)−0.7736 (2)0.0519 (6)
N10.50139 (16)0.59578 (9)0.4425 (2)0.0182 (4)
N20.50940 (17)0.56838 (9)0.5969 (2)0.0191 (4)
H2N0.446 (2)0.5655 (12)0.649 (3)0.029*
N30.75746 (18)0.48377 (10)1.1061 (2)0.0267 (5)
N40.60955 (16)0.69295 (9)−0.1986 (2)0.0181 (4)
N50.65934 (16)0.70405 (9)−0.3383 (2)0.0184 (4)
H5N0.611 (2)0.7106 (11)−0.442 (3)0.028*
N60.9889 (2)0.66605 (11)−0.6418 (3)0.0340 (5)
C10.38972 (19)0.64722 (10)0.2032 (2)0.0171 (4)
C20.29149 (19)0.67487 (10)0.1014 (3)0.0194 (5)
H20.21370.67870.13220.023*
C30.31778 (19)0.69709 (10)−0.0543 (2)0.0186 (4)
H30.25960.7175−0.13890.022*
C40.43575 (19)0.68609 (10)−0.0706 (2)0.0173 (4)
C50.3983 (2)0.61919 (10)0.3698 (2)0.0189 (5)
H50.32970.61810.42420.023*
C60.6201 (2)0.54271 (10)0.6765 (3)0.0184 (5)
C70.6332 (2)0.52533 (10)0.8470 (3)0.0189 (5)
H70.56800.53030.90690.023*
C80.7441 (2)0.50061 (11)0.9255 (2)0.0208 (5)
C90.8416 (2)0.49104 (11)0.8444 (3)0.0245 (5)
H90.91650.47400.90280.029*
C100.8256 (2)0.50743 (11)0.6740 (3)0.0240 (5)
H100.89030.50080.61400.029*
C110.7166 (2)0.53338 (10)0.5900 (3)0.0216 (5)
H110.70760.54480.47380.026*
C120.49410 (19)0.70092 (10)−0.2128 (2)0.0174 (4)
H120.44740.7164−0.31590.021*
C130.77989 (19)0.68714 (10)−0.3355 (2)0.0162 (4)
C140.8226 (2)0.68469 (10)−0.4875 (3)0.0193 (5)
H140.77030.6936−0.59210.023*
C150.9433 (2)0.66899 (11)−0.4818 (3)0.0223 (5)
C161.0241 (2)0.65534 (12)−0.3337 (3)0.0264 (5)
H161.10690.6452−0.33450.032*
C170.9786 (2)0.65709 (11)−0.1840 (3)0.0253 (5)
H171.03110.6473−0.08020.030*
C180.8583 (2)0.67280 (10)−0.1833 (3)0.0200 (5)
H180.82890.6738−0.07960.024*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0173 (3)0.0206 (3)0.0161 (3)0.0015 (2)0.00585 (19)0.0015 (2)
O10.0278 (11)0.0719 (15)0.0297 (10)0.0132 (10)−0.0019 (8)0.0147 (9)
O20.0306 (10)0.0526 (12)0.0217 (8)0.0002 (8)0.0090 (7)0.0075 (7)
O30.0333 (12)0.0913 (18)0.0497 (12)0.0191 (11)0.0300 (10)0.0196 (11)
O40.0481 (13)0.0905 (17)0.0198 (10)0.0207 (11)0.0136 (9)0.0044 (9)
N10.0241 (10)0.0195 (10)0.0122 (8)−0.0030 (8)0.0065 (7)−0.0013 (7)
N20.0215 (10)0.0240 (10)0.0132 (8)−0.0002 (8)0.0069 (7)0.0020 (7)
N30.0290 (12)0.0286 (11)0.0230 (10)0.0034 (9)0.0061 (9)0.0030 (8)
N40.0212 (10)0.0197 (10)0.0152 (9)−0.0012 (8)0.0080 (7)−0.0006 (7)
N50.0165 (9)0.0272 (10)0.0126 (9)0.0029 (8)0.0052 (7)0.0040 (7)
N60.0326 (13)0.0449 (14)0.0297 (12)0.0129 (10)0.0192 (10)0.0116 (9)
C10.0188 (11)0.0167 (11)0.0171 (10)−0.0050 (9)0.0070 (8)−0.0024 (8)
C20.0161 (11)0.0241 (12)0.0186 (11)−0.0013 (9)0.0051 (8)−0.0013 (8)
C30.0172 (11)0.0227 (11)0.0154 (10)−0.0010 (9)0.0020 (8)0.0006 (8)
C40.0204 (11)0.0164 (11)0.0148 (10)−0.0018 (9)0.0025 (8)−0.0001 (8)
C50.0208 (11)0.0198 (11)0.0174 (10)−0.0039 (9)0.0068 (8)−0.0021 (8)
C60.0212 (12)0.0151 (11)0.0190 (10)−0.0044 (9)0.0042 (8)−0.0020 (8)
C70.0219 (12)0.0176 (11)0.0181 (10)−0.0018 (9)0.0063 (8)−0.0009 (8)
C80.0258 (13)0.0207 (12)0.0156 (10)−0.0034 (9)0.0032 (9)0.0009 (8)
C90.0202 (12)0.0260 (13)0.0274 (12)0.0003 (10)0.0049 (9)0.0012 (9)
C100.0211 (12)0.0261 (13)0.0274 (12)−0.0029 (10)0.0112 (9)0.0001 (9)
C110.0245 (12)0.0225 (12)0.0186 (11)−0.0053 (9)0.0059 (9)0.0009 (8)
C120.0190 (11)0.0183 (11)0.0150 (10)0.0006 (9)0.0033 (8)−0.0009 (8)
C130.0173 (11)0.0163 (11)0.0162 (10)−0.0012 (8)0.0061 (8)0.0001 (8)
C140.0200 (12)0.0201 (11)0.0186 (10)0.0004 (9)0.0060 (8)0.0031 (8)
C150.0237 (12)0.0255 (12)0.0207 (11)0.0030 (9)0.0116 (9)0.0019 (8)
C160.0149 (11)0.0340 (14)0.0313 (12)0.0040 (10)0.0070 (9)0.0018 (10)
C170.0193 (12)0.0349 (14)0.0196 (11)0.0007 (10)−0.0016 (9)−0.0011 (9)
C180.0234 (12)0.0236 (12)0.0137 (10)−0.0002 (9)0.0050 (8)−0.0002 (8)

Geometric parameters (Å, °)

S1—C11.737 (2)C5—H50.9500
S1—C41.739 (2)C6—C111.399 (3)
O1—N31.225 (3)C6—C71.398 (3)
O2—N31.229 (2)C7—C81.382 (3)
O3—N61.230 (3)C7—H70.9500
O4—N61.217 (3)C8—C91.382 (3)
N1—C51.288 (3)C9—C101.390 (3)
N1—N21.352 (2)C9—H90.9500
N2—C61.391 (3)C10—C111.389 (3)
N2—H2N0.89 (3)C10—H100.9500
N3—C81.473 (3)C11—H110.9500
N4—C121.285 (3)C12—H120.9500
N4—N51.360 (2)C13—C141.391 (3)
N5—C131.389 (3)C13—C181.400 (3)
N5—H5N0.92 (2)C14—C151.380 (3)
N6—C151.468 (3)C14—H140.9500
C1—C21.369 (3)C15—C161.385 (3)
C1—C51.445 (3)C16—C171.388 (3)
C2—C31.413 (3)C16—H160.9500
C2—H20.9500C17—C181.385 (3)
C3—C41.368 (3)C17—H170.9500
C3—H30.9500C18—H180.9500
C4—C121.449 (3)
C1—S1—C491.17 (10)C6—C7—H7121.1
C5—N1—N2118.56 (18)C9—C8—C7123.82 (19)
N1—N2—C6119.09 (18)C9—C8—N3118.9 (2)
N1—N2—H2N122.5 (16)C7—C8—N3117.29 (19)
C6—N2—H2N118.4 (16)C8—C9—C10117.3 (2)
O1—N3—O2123.37 (19)C8—C9—H9121.4
O1—N3—C8118.43 (19)C10—C9—H9121.4
O2—N3—C8118.20 (19)C9—C10—C11121.2 (2)
C12—N4—N5117.41 (17)C9—C10—H10119.4
N4—N5—C13119.06 (17)C11—C10—H10119.4
N4—N5—H5N121.3 (16)C10—C11—C6119.9 (2)
C13—N5—H5N117.1 (16)C10—C11—H11120.0
O4—N6—O3123.4 (2)C6—C11—H11120.0
O4—N6—C15118.4 (2)N4—C12—C4119.47 (18)
O3—N6—C15118.2 (2)N4—C12—H12120.3
C2—C1—C5129.17 (19)C4—C12—H12120.3
C2—C1—S1111.39 (15)N5—C13—C14118.84 (18)
C5—C1—S1119.43 (16)N5—C13—C18121.25 (18)
C1—C2—C3113.04 (19)C14—C13—C18119.9 (2)
C1—C2—H2123.5C15—C14—C13118.01 (19)
C3—C2—H2123.5C15—C14—H14121.0
C4—C3—C2112.95 (19)C13—C14—H14121.0
C4—C3—H3123.5C14—C15—C16123.8 (2)
C2—C3—H3123.5C14—C15—N6118.30 (19)
C3—C4—C12128.36 (19)C16—C15—N6117.9 (2)
C3—C4—S1111.45 (15)C15—C16—C17117.0 (2)
C12—C4—S1120.17 (16)C15—C16—H16121.5
N1—C5—C1118.30 (19)C17—C16—H16121.5
N1—C5—H5120.9C18—C17—C16121.3 (2)
C1—C5—H5120.9C18—C17—H17119.4
N2—C6—C11121.80 (19)C16—C17—H17119.4
N2—C6—C7118.27 (19)C17—C18—C13119.98 (19)
C11—C6—C7119.9 (2)C17—C18—H18120.0
C8—C7—C6117.9 (2)C13—C18—H18120.0
C8—C7—H7121.1
C5—N1—N2—C6179.76 (19)N3—C8—C9—C10179.9 (2)
C12—N4—N5—C13−170.79 (19)C8—C9—C10—C111.1 (3)
C4—S1—C1—C20.37 (17)C9—C10—C11—C6−0.8 (3)
C4—S1—C1—C5179.95 (17)N2—C6—C11—C10−179.8 (2)
C5—C1—C2—C3−179.9 (2)C7—C6—C11—C10−0.6 (3)
S1—C1—C2—C3−0.4 (2)N5—N4—C12—C4176.44 (18)
C1—C2—C3—C40.2 (3)C3—C4—C12—N4173.0 (2)
C2—C3—C4—C12178.6 (2)S1—C4—C12—N4−8.6 (3)
C2—C3—C4—S10.1 (2)N4—N5—C13—C14165.61 (18)
C1—S1—C4—C3−0.26 (17)N4—N5—C13—C18−14.5 (3)
C1—S1—C4—C12−178.90 (17)N5—C13—C14—C15178.8 (2)
N2—N1—C5—C1−178.75 (17)C18—C13—C14—C15−1.1 (3)
C2—C1—C5—N1−180.0 (2)C13—C14—C15—C160.2 (3)
S1—C1—C5—N10.5 (3)C13—C14—C15—N6179.7 (2)
N1—N2—C6—C11−12.2 (3)O4—N6—C15—C14−15.1 (3)
N1—N2—C6—C7168.57 (18)O3—N6—C15—C14164.4 (2)
N2—C6—C7—C8−179.20 (19)O4—N6—C15—C16164.5 (2)
C11—C6—C7—C81.5 (3)O3—N6—C15—C16−16.0 (3)
C6—C7—C8—C9−1.2 (3)C14—C15—C16—C170.8 (4)
C6—C7—C8—N3178.75 (18)N6—C15—C16—C17−178.7 (2)
O1—N3—C8—C919.0 (3)C15—C16—C17—C18−1.0 (4)
O2—N3—C8—C9−161.5 (2)C16—C17—C18—C130.1 (3)
O1—N3—C8—C7−161.0 (2)N5—C13—C18—C17−178.9 (2)
O2—N3—C8—C718.6 (3)C14—C13—C18—C170.9 (3)
C7—C8—C9—C10−0.1 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S1,C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2n···O2i0.89 (2)2.27 (2)3.103 (2)156 (2)
C2—H2···O3ii0.952.463.278 (3)145
C18—H18···O4iii0.952.483.241 (3)137
C12—H12···Cg1iv0.952.583.323 (2)135

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1, y, z+1; (iii) x, y, z+1; (iv) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2635).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Campaigne, E. (1984). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & C. W. Rees, pp. 863–934. Oxford: Pergamon.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ferreira de Lima, M., de Souza, M. V. N., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3203. [PMC free article] [PubMed]
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Kleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). In Pharmaceutical Substances New York, Stuttgart: Georg Thieme Verlag.
  • Kwon, O.-P., Jazbinsek, M., Seo, J.-I., Kim, P.-J., Yun, H., Lee, Y. S. & Gunter, P. (2009). J. Phys. Chem. C, 113, 15405–15411.
  • Lourenço, M. C. S., Vicente, F. R., Henriques, M., das, G. M. de O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. de L. & de Souza, M. V. N. (2007). Bioorg. Med. Chem. Lett 17, 6895–6898. [PubMed]
  • Mellado, O. G. & Cortes, E. C. (2009). Mex. Pat. Appl. CODEN: MXXXA3 MX 2007012608 A 20090413.
  • Michaleviciute, A., Buika, G., Grazulevicius, J. V., Tran-Van, F., Chevrot, C. & Jankauskas, V. (2007). Mol. Cryst. Liq. Cryst 468, 459–470.
  • Michaleviciute, A., Lygaitis, R., Grazulevicius, J. V., Buika, G., Jankauskas, V., Undzenas, A. & Fataraite, E. (2009). Synth. Met.159, 223–227.
  • Nogueira, T. C. M., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o177. [PMC free article] [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Satyanarayana, V. S. V., Sreevani, P., Sivakumar, A. & Vijayakumar, V. (2008). ARKIVOC, pp. 221–233.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sonar, V. N. & Crooks, P. A. (2009). J. Enz. Inhib. Med. Chem.24, 117–124 [PubMed]
  • Vaysse, M. & Pastour, P. (1964). Compt. Rend.259, 2657–2659.
  • Wardell, S. M. S. V., de Lima, G. M., Tiekink, E. R. T. & Wardell, J. L. (2010). Acta Cryst. E66, o271–o272. [PMC free article] [PubMed]
  • Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. E63, o1848–o1850.
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography