PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o269–o270.
Published online 2010 January 9. doi:  10.1107/S1600536809054956
PMCID: PMC2979778

A monoclinic polymorph of 1-(4-chloro­phen­yl)-3-(4-methoxy­phen­yl)prop-2-en-1-one

Abstract

The crystal structure of the title compound, C16H13ClO2 (II), (space group P21/c,) is a polymorph of the structure, (I), reported by Harrison, Yathirajan, Sarojini, Narayana & Indira [Acta Cryst. (2006), E62, o1647–o1649] in the ortho­rhom­bic space group Pna21. The dihedral angle between the mean planes of the 4-chloro- and 4-meth­oxy-substituted benzene rings is 52.9 (1)° in (II) compared to 21.82 (6)° for polymorph (I). The dihedral angles between the mean planes of the prop-2-en-1-one group and those of the 4-chloro­phenyl and 4-methoxy­phenyl rings are 23.3 (3) and 33.7 (1)°, respectively. in (II). The corresponding values are 17.7 (1) and 6.0 (3)°, respectively, in polymorph (I). In the crystal, weak C—H(...)π inter­actions are observed.

Related literature

For the orthorhomic polymorph, see: Harrison et al. (2006 [triangle]). For the biological activity of chalcones and flavonoids, see: Dimmock et al. (1999 [triangle]); Opletalova & Sedivy (1999 [triangle]); Lin et al. (2002 [triangle]); Nowakowska (2007 [triangle]). For the synthesis and biological activity of some fluorinated chalcone derivatives, see: Nakamura et al. (2002 [triangle]). For non-linear optical studies of chalcones and their derivatives, see: Sarojini et al. (2006 [triangle]); Poornesh et al. (2009 [triangle]); Shettigar et al. (2006 [triangle], 2008 [triangle]). For our studies of chalcones, see: Jasinski et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o269-scheme1.jpg

Experimental

Crystal data

  • C16H13ClO2
  • M r = 272.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o269-efi1.jpg
  • a = 15.6695 (7) Å
  • b = 14.1235 (8) Å
  • c = 5.8455 (3) Å
  • β = 90.771 (5)°
  • V = 1293.53 (12) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 2.57 mm−1
  • T = 110 K
  • 0.54 × 0.13 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.483, T max = 0.558
  • 5083 measured reflections
  • 2537 independent reflections
  • 2223 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.096
  • S = 1.04
  • 2537 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809054956/om2306sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054956/om2306Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SS thanks Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Chalcone is an unique template molecule that is associated with several biological activities. A review on the bioactivities of chalcones is described (Dimmock et al. 1999). Chalcones and their heterocyclic analogs as potential antifungal chemotherapeutic agents is published (Opletalova & Sedivy, 1999). Chalcones and flavonoids as anti-tuberculosis agents has been reported (Lin et al. 2002) and a review of anti-infective and anti-inflammatory chalcones is also described (Nowakowska, 2007) as well as the synthesis and biological activities of some fluorinated chalcone derivatives (Nakamura et al. 2002). In addition, chalcones are finding applications as organic non-linear optical materials (NLO) due to their good SHG conversion efficiencies (Sarojini et al. 2006). Recently, non-linear optical studies on a few chalcones and their derivatives were reported (Poornesh et al. 2009; Shettigar et al. 2006; 2008). In continuation of our work on chalcones (Jasinski et al. 2009) and in view of the importance of chloro chalcones, this paper describes a new polymorphic form of (I), C16H13ClO2, 1-(4-chlorophenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one, first reported by Harrison et al. (2006). Substantial changes in the cell parameters provides solid support for the recognition of this new polymorphic form for (I).

The title compound, (II), is a chalcone derivative with 4-chlorophenyl and 4-methoxyphenyl rings bonded at the opposite ends of a propenone group, the biologically active region (Fig.1). The dihedral angle between mean planes of the 4-chloro and 4-methoxy substituted benzene rings in (II) is 52.9 (1)° compared to 21.82 (6)° (Harrison et al. (2006); 4-chlorohenyl & 4-methoxyphenyl) for polymorph (I) in the orthorhombic, Pna21, space group. The angles between the mean plane of the prop-2-ene-1-one group and those of the 4-chlorophenyl and 4-methoxyphenyl rings in (II) are 23.3 (3)° and 33.7 (1)°, respectively. This compares to 17.7 (1)° and 6.0 (3)° in polymorph (I). A weak intramolecular C9–H9···O1 hydrogen bond interaction is present which may help to maintain the molecular conformation of the molecule (Table 1) and similar to that observed in (I). While no classical hydrogen bonds are present, weak intermolecular C–H···Cgπ-ring interactions are observed, Cg1 = C1–C6 and Cg2 = C10–C15, see Table 1.

Experimental

In (II), 4-chloroacetophenone in ethanol (1.54 g, 0.01 mol) (25 ml) was mixed with 4-methoxybenzaldehyde (1.36 g, 0.01 mol) in ethanol (25 ml) and the mixture was treated with an aqueous solution of potassium hydroxide (20 ml, 5%). This mixture was stirred well and left to stand for 24 hr. The resulting crude solid mass was collected by filtration and recrystallized from ethanol, yielding clear blocks of (II). Yield: 90%, m.p.: 391–393 K, analysis found (calculated) for C16H13ClO2: C: 70.5 (70.4%); H: 4.72 (4.76%). The preparation and crystallization procedure for (I) was identical to that described above for (II). However, in (I) the m.p. measured 380 K, a difference of 12 K. The samples of (I) and (II) were not independently tested for concomitant polymorphism.

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.18–1.48Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound, C16H13ClO2, (II), showing the atom labeling scheme and 50% probability displacement ellipsoids.
Fig. 2.
Packing diagram of the title compound, (II), viewed down the c axis. Weak C–H..O intramolecular hydrogen bond interactions are shown as dashed lines.

Crystal data

C16H13ClO2F(000) = 568
Mr = 272.71Dx = 1.400 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3121 reflections
a = 15.6695 (7) Åθ = 4.2–73.8°
b = 14.1235 (8) ŵ = 2.57 mm1
c = 5.8455 (3) ÅT = 110 K
β = 90.771 (5)°Needle, colorless
V = 1293.53 (12) Å30.54 × 0.13 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector2537 independent reflections
Radiation source: Enhance (Cu) X-ray Source2223 reflections with I > 2σ(I)
graphiteRint = 0.021
Detector resolution: 10.5081 pixels mm-1θmax = 74.0°, θmin = 4.2°
ω scansh = −19→17
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −16→17
Tmin = 0.483, Tmax = 0.558l = −5→7
5083 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0574P)2 + 0.4041P] where P = (Fo2 + 2Fc2)/3
2537 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.84683 (2)0.61936 (3)0.17788 (6)0.02523 (13)
O10.47093 (7)0.63259 (9)0.70069 (19)0.0289 (3)
O20.01821 (7)0.61488 (8)−0.07719 (19)0.0241 (3)
C10.57310 (9)0.62821 (10)0.4074 (3)0.0181 (3)
C20.63878 (9)0.66090 (10)0.5520 (2)0.0188 (3)
H20.62550.68490.69900.023*
C30.72286 (9)0.65859 (10)0.4828 (3)0.0198 (3)
H30.76720.68170.58000.024*
C40.74128 (9)0.62174 (10)0.2682 (3)0.0193 (3)
C50.67775 (10)0.58747 (11)0.1233 (3)0.0205 (3)
H50.69160.5612−0.02120.025*
C60.59317 (9)0.59211 (11)0.1929 (3)0.0202 (3)
H60.54890.57050.09340.024*
C70.48352 (9)0.63066 (10)0.4945 (3)0.0200 (3)
C80.41225 (9)0.63059 (11)0.3255 (3)0.0211 (3)
H80.42230.64670.17040.025*
C90.33359 (9)0.60773 (11)0.3930 (3)0.0200 (3)
H90.32840.58850.54790.024*
C100.25468 (9)0.60893 (10)0.2562 (3)0.0181 (3)
C110.24715 (9)0.65496 (11)0.0440 (3)0.0202 (3)
H110.29600.6839−0.02060.024*
C120.16938 (9)0.65893 (11)−0.0730 (3)0.0200 (3)
H120.16480.6915−0.21490.024*
C130.09809 (9)0.61476 (10)0.0193 (3)0.0187 (3)
C140.10492 (9)0.56679 (11)0.2274 (3)0.0202 (3)
H140.05670.53540.28820.024*
C150.18181 (9)0.56513 (11)0.3443 (2)0.0199 (3)
H150.18560.53360.48770.024*
C160.00342 (10)0.67344 (13)−0.2722 (3)0.0263 (3)
H16A0.01400.7397−0.23110.039*
H16B−0.05590.6662−0.32480.039*
H16C0.04200.6547−0.39480.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0180 (2)0.0276 (2)0.0302 (2)0.00214 (13)0.00556 (14)0.00128 (15)
O10.0214 (6)0.0441 (7)0.0212 (6)−0.0035 (5)0.0006 (4)0.0008 (5)
O20.0158 (5)0.0266 (6)0.0298 (6)−0.0025 (4)−0.0041 (4)0.0048 (5)
C10.0174 (7)0.0170 (7)0.0198 (7)−0.0009 (5)−0.0019 (5)0.0039 (6)
C20.0197 (7)0.0188 (7)0.0180 (7)0.0019 (5)−0.0009 (5)−0.0002 (6)
C30.0185 (7)0.0188 (7)0.0221 (7)0.0000 (5)−0.0031 (5)−0.0009 (6)
C40.0167 (7)0.0172 (7)0.0239 (7)0.0018 (5)0.0022 (6)0.0034 (6)
C50.0251 (7)0.0189 (7)0.0176 (7)0.0019 (6)0.0016 (6)−0.0002 (5)
C60.0194 (7)0.0206 (7)0.0206 (7)−0.0015 (5)−0.0038 (5)0.0008 (6)
C70.0196 (7)0.0193 (7)0.0212 (7)−0.0006 (5)−0.0008 (6)0.0012 (6)
C80.0178 (7)0.0248 (8)0.0207 (7)0.0005 (6)0.0000 (6)0.0021 (6)
C90.0206 (7)0.0189 (7)0.0204 (7)0.0017 (5)−0.0001 (6)0.0010 (6)
C100.0167 (7)0.0170 (7)0.0207 (7)0.0023 (5)0.0015 (5)−0.0012 (6)
C110.0164 (7)0.0222 (7)0.0220 (7)−0.0007 (5)0.0032 (5)0.0011 (6)
C120.0195 (7)0.0215 (8)0.0190 (7)0.0001 (6)0.0012 (5)0.0008 (6)
C130.0161 (7)0.0171 (7)0.0228 (7)0.0009 (5)−0.0013 (5)−0.0033 (6)
C140.0177 (7)0.0187 (7)0.0245 (7)−0.0015 (5)0.0039 (5)0.0012 (6)
C150.0212 (7)0.0186 (7)0.0201 (7)0.0016 (6)0.0030 (5)0.0015 (6)
C160.0213 (7)0.0341 (9)0.0235 (8)0.0027 (6)−0.0036 (6)0.0014 (7)

Geometric parameters (Å, °)

Cl1—C41.7431 (15)C8—H80.9500
O1—C71.2240 (19)C9—C101.464 (2)
O2—C131.3659 (18)C9—H90.9500
O2—C161.4248 (19)C10—C151.403 (2)
C1—C61.394 (2)C10—C111.404 (2)
C1—C21.401 (2)C11—C121.391 (2)
C1—C71.500 (2)C11—H110.9500
C2—C31.384 (2)C12—C131.395 (2)
C2—H20.9500C12—H120.9500
C3—C41.392 (2)C13—C141.395 (2)
C3—H30.9500C14—C151.377 (2)
C4—C51.386 (2)C14—H140.9500
C5—C61.393 (2)C15—H150.9500
C5—H50.9500C16—H16A0.9800
C6—H60.9500C16—H16B0.9800
C7—C81.481 (2)C16—H16C0.9800
C8—C91.339 (2)
C13—O2—C16118.00 (12)C8—C9—H9116.2
C6—C1—C2119.36 (14)C10—C9—H9116.2
C6—C1—C7122.52 (13)C15—C10—C11118.00 (13)
C2—C1—C7118.09 (13)C15—C10—C9118.70 (14)
C3—C2—C1120.69 (14)C11—C10—C9123.25 (13)
C3—C2—H2119.7C12—C11—C10121.06 (13)
C1—C2—H2119.7C12—C11—H11119.5
C2—C3—C4118.82 (13)C10—C11—H11119.5
C2—C3—H3120.6C11—C12—C13119.52 (14)
C4—C3—H3120.6C11—C12—H12120.2
C5—C4—C3121.70 (14)C13—C12—H12120.2
C5—C4—Cl1119.01 (12)O2—C13—C12125.02 (13)
C3—C4—Cl1119.29 (11)O2—C13—C14114.83 (13)
C4—C5—C6118.91 (14)C12—C13—C14120.15 (13)
C4—C5—H5120.5C15—C14—C13119.82 (14)
C6—C5—H5120.5C15—C14—H14120.1
C5—C6—C1120.48 (13)C13—C14—H14120.1
C5—C6—H6119.8C14—C15—C10121.41 (14)
C1—C6—H6119.8C14—C15—H15119.3
O1—C7—C8121.77 (14)C10—C15—H15119.3
O1—C7—C1119.92 (13)O2—C16—H16A109.5
C8—C7—C1118.31 (13)O2—C16—H16B109.5
C9—C8—C7119.51 (14)H16A—C16—H16B109.5
C9—C8—H8120.2O2—C16—H16C109.5
C7—C8—H8120.2H16A—C16—H16C109.5
C8—C9—C10127.64 (14)H16B—C16—H16C109.5
C6—C1—C2—C30.7 (2)C7—C8—C9—C10176.11 (14)
C7—C1—C2—C3178.69 (13)C8—C9—C10—C15167.66 (15)
C1—C2—C3—C4−1.0 (2)C8—C9—C10—C11−14.8 (2)
C2—C3—C4—C5−0.1 (2)C15—C10—C11—C121.4 (2)
C2—C3—C4—Cl1179.45 (11)C9—C10—C11—C12−176.08 (14)
C3—C4—C5—C61.4 (2)C10—C11—C12—C13−1.4 (2)
Cl1—C4—C5—C6−178.06 (11)C16—O2—C13—C12−7.9 (2)
C4—C5—C6—C1−1.8 (2)C16—O2—C13—C14171.26 (13)
C2—C1—C6—C50.7 (2)C11—C12—C13—O2178.95 (14)
C7—C1—C6—C5−177.17 (14)C11—C12—C13—C14−0.2 (2)
C6—C1—C7—O1155.92 (15)O2—C13—C14—C15−177.58 (13)
C2—C1—C7—O1−22.0 (2)C12—C13—C14—C151.6 (2)
C6—C1—C7—C8−24.0 (2)C13—C14—C15—C10−1.6 (2)
C2—C1—C7—C8158.05 (14)C11—C10—C15—C140.0 (2)
O1—C7—C8—C9−17.5 (2)C9—C10—C15—C14177.68 (13)
C1—C7—C8—C9162.41 (14)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.952.472.8080 (19)101
C2—H2···Cg1i0.952.853.4675 (15)124
C12—H12···Cg2ii0.952.923.6616 (17)136

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2306).

References

  • Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem.6, 1125–1149. [PubMed]
  • Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Indira, J. (2006). Acta Cryst. E62, o1647–o1649.
  • Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2009). J. Chem. Crystallogr.39, 157–162.
  • Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem.10, 2795–2802. [PubMed]
  • Nakamura, C., Kawasaki, N., Miyataka, H., Jayachandran, E., Kim, I., Kirk, K. L., Taguchi, T., Takeuchi, Y., Hori, H. & Satoh, T. (2002). Bioorg. Med. Chem.10, 699–706. [PubMed]
  • Nowakowska, Z. (2007). Eur. J. Med. Chem.42, 125–137. [PubMed]
  • Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm.48, 252–255. [PubMed]
  • Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Poornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Prakash Kamath, K., Sarojini, B. K. & Narayana, B. (2009). Opt. Mater.31, 854–859.
  • Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565–3567.
  • Shettigar, S., Umesh, G., Chandrasekharan, K., Sarojini, B. K. & Narayana, B. (2008). Opt. Mater.30, 1297–1303.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography