PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m134–m135.
Published online 2010 January 9. doi:  10.1107/S1600536810000048
PMCID: PMC2979776

Chloridobis[2-(1,5-dimethyl-1H-pyrazol-3-yl-κN 2)-1-methyl-1H-imidazole-κN 3]copper(II) chloride methanol hemisolvate tetra­hydrate

Abstract

In the title compound, [CuCl(C9H12N4)2]Cl·0.5CH3OH·4H2O, the CuII ion adopts a distorted trigonal-bipyramidal coordination arising from two bidentate ligands and a Cl anion. The two heterocyclic ligands are planar with dihedral angles of 3.4 (1) and 0.7 (1)° between the pyrazole and imidazole rings. In the crystal, water mol­ecules and uncoordinated chloride anions form an O—H(...)Cl and O—H(...)O hydrogen-bonded sheet parallel to (100) which lies between two layers of complex mol­ecules. The packing is further stabilized by C—H(...)Cl and C—H(...)O hydrogen bonds. The methanol solvent mol­ecule is disordered across a centre of inversion.

Related literature

For applications of transition metal complexes with biheterocyclic ligands, see: Allen & Wilson (1963 [triangle]); El-Khawass & Bistawroos (1990 [triangle]); Pearson (1975 [triangle]); Trofimenko (1993 [triangle]); Tsuboi et al. (1994 [triangle]); Hartfiel et al. (1993 [triangle]). For the preparation of biheterocyclic ligands, see: Tjiou et al. (1989 [triangle]); Bouhaddioui (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m134-scheme1.jpg

Experimental

Crystal data

  • [CuCl(C9H12N4)2]Cl·0.5CH4O·4H2O
  • M r = 574.98
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m134-efi1.jpg
  • a = 12.5213 (3) Å
  • b = 15.5386 (4) Å
  • c = 14.1806 (4) Å
  • β = 100.883 (1)°
  • V = 2709.40 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.04 mm−1
  • T = 298 K
  • 0.44 × 0.33 × 0.19 mm

Data collection

  • Bruker X8 APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.668, T max = 0.820
  • 47954 measured reflections
  • 7884 independent reflections
  • 5480 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.124
  • S = 1.01
  • 7884 reflections
  • 323 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000048/ci2996sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000048/ci2996Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for making this work possible. They also thank H. Zouihri for his helpful technical assistance during the X-ray measurements.

supplementary crystallographic information

Comment

The ability of biheterocycles to form stable and biochemically interesting complexes, with transition metals has prompted several researchers to test them in several areas: medicine (El-Khawass & Bistawroos, 1990, Trofimenko, 1993), agriculture (Tsuboi et al., 1994, Hartfiel et al., 1993) and the photography industry (Allen & Wilson, 1963; Pearson, 1975). To contribute to the understanding of interaction of these heterocyclic compounds with transition metals, we have studied a copper complex of a biheterocycle prepared by Tjiou et al. (1989) and methylated using phase transfer catalysis process (Bouhaddioui, 1993).

The CuII ion adopts a distorted trigonal bipyramidal coordination arising from two bidentate ligands and a Cl- anion (Fig. 1). The axial positions are occupied by N1 and N5 [N1—Cu1—N5 = 173.03 (7)°], while atoms Cu1, Cl1, N4 and N8 lie in the equatorial plane [N4—Cu1—Cl1 = 128.60 (4)°, N8—Cu1—Cl1 = 132.50 (4)° and N4—Cu1—N8 = 98.90 (6)°]. The two organic ligands are almost planar; the dihedral angle between N1/C1/C2/N2/C3 and N3/N4/C4-C6 planes is 3.4 (1)° and that between N5/C10/C11/N6/C12 and N7/N8/C13-C15 planes is 0.7 (1)°.

In the crystal, the water molecules and uncoordinated chloride ions form a O—H···Cl and O—H···O hydrogen-bonded sheet parallel to the (100) and it lies between two layers of complex molecules. The packing is further stabilized by C—H···Cl and C—H···O hydrogen bonds (Table 2 and Fig.2).

Experimental

The title compound was synthesized by mixing a solution of biheterocycle in methanol and an aqueous solution of cupric chloride with a ligand/metal ratio of 2. Heating was maintained for few minutes until dissolution of all ligand. Then a pinch of NaCl was added and the heating was continued. When the solution became clear, it was left to stand at room temperature. After a few days, green crystals were collected by filtration. They were dried over P2O5 in a desiccator for 48 h.

Refinement

The methanol molecule is disordered across a centre of inversion. All O-bound H atoms were initially located in a difference map and refined with a O–H distance restraint of 0.84 (1) Å and an additional H···H restraint of 1.37 (2) Å for the water molecules. Later they were refined in the riding model with Uiso(H) set to 1.5Ueq(O). The C-bound H atoms were positioned geometrically [C-H = 0.93-0.96 Å] and refined using a riding model with Uiso(H) = 1.2-1.5Ueq(O). Reflections 110, 011 and 111 affected by beamstop were removed during refinement. The reflections 031, 313, 532 and 230 were omitted because the difference between their calculated and observed intensities are very large.

Figures

Fig. 1.
The asymmetric unit of the title compound, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Packing diagram showing hydrogen-bonded (dashed lines) layer of solvent molecules between the complex molecules.

Crystal data

[CuCl(C9H12N4)2]Cl·0.5CH4O·4H2OF(000) = 1200
Mr = 574.98Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4291 reflections
a = 12.5213 (3) Åθ = 2.6–29.8°
b = 15.5386 (4) ŵ = 1.04 mm1
c = 14.1806 (4) ÅT = 298 K
β = 100.883 (1)°Block, green
V = 2709.40 (12) Å30.44 × 0.33 × 0.19 mm
Z = 4

Data collection

Bruker X8 APEXII area-detector diffractometer7884 independent reflections
Radiation source: fine-focus sealed tube5480 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 30.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −17→17
Tmin = 0.668, Tmax = 0.820k = −20→21
47954 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0649P)2 + 0.7437P] where P = (Fo2 + 2Fc2)/3
7884 reflections(Δ/σ)max = 0.001
323 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.900612 (18)0.233115 (15)0.118071 (16)0.04439 (9)
Cl10.90806 (7)0.08691 (4)0.12169 (4)0.0800 (2)
N10.78145 (13)0.23508 (10)0.00716 (12)0.0454 (3)
N20.70109 (13)0.28521 (11)−0.13260 (12)0.0477 (4)
N31.05116 (12)0.37246 (10)0.01121 (11)0.0417 (3)
N40.96472 (12)0.32276 (9)0.02067 (10)0.0393 (3)
N51.01880 (13)0.24643 (10)0.22878 (12)0.0450 (4)
N61.09451 (12)0.30513 (12)0.36557 (12)0.0486 (4)
N70.74464 (12)0.38061 (10)0.21093 (10)0.0399 (3)
N80.83164 (11)0.32983 (9)0.20746 (10)0.0379 (3)
C10.68255 (17)0.19476 (15)−0.01803 (16)0.0570 (5)
H10.65470.15320.01790.068*
C20.63247 (18)0.22604 (15)−0.10454 (17)0.0571 (5)
H20.56430.2102−0.13840.068*
C30.79083 (15)0.28850 (11)−0.06320 (12)0.0403 (4)
C40.89033 (15)0.33733 (10)−0.05888 (12)0.0379 (3)
C50.92968 (17)0.39587 (12)−0.11883 (13)0.0452 (4)
H50.89370.4163−0.17800.054*
C61.03251 (16)0.41695 (11)−0.07205 (13)0.0443 (4)
C70.6782 (2)0.33629 (16)−0.22015 (15)0.0620 (6)
H7A0.60520.3252−0.25310.093*
H7B0.72830.3211−0.26090.093*
H7C0.68590.3963−0.20420.093*
C81.11508 (19)0.47529 (14)−0.10149 (17)0.0588 (5)
H8A1.08780.4972−0.16480.088*
H8B1.18110.4439−0.10160.088*
H8C1.12950.5224−0.05710.088*
C91.14876 (18)0.37281 (16)0.08480 (18)0.0626 (6)
H9A1.19150.42270.07710.094*
H9B1.19040.32180.07910.094*
H9C1.12900.37410.14700.094*
C101.12060 (17)0.21135 (15)0.25698 (17)0.0567 (5)
H101.15170.16960.22360.068*
C111.16802 (17)0.24752 (15)0.34115 (18)0.0583 (5)
H111.23720.23570.37590.070*
C121.00555 (14)0.30198 (12)0.29551 (13)0.0410 (4)
C130.90411 (14)0.34939 (11)0.28650 (12)0.0373 (3)
C140.86365 (16)0.41194 (12)0.34037 (13)0.0463 (4)
H140.89830.43590.39820.056*
C150.76163 (16)0.43081 (12)0.28999 (13)0.0446 (4)
C160.64923 (17)0.37722 (16)0.13561 (16)0.0570 (5)
H16A0.60960.43020.13450.086*
H16B0.60380.33020.14740.086*
H16C0.67100.36900.07480.086*
C170.6784 (2)0.49353 (17)0.31146 (19)0.0672 (6)
H17A0.70670.52330.37020.101*
H17B0.61350.46310.31810.101*
H17C0.66180.53430.25990.101*
C181.1111 (2)0.35786 (17)0.45289 (17)0.0655 (6)
H18A1.18210.34670.49020.098*
H18B1.05690.34380.49000.098*
H18C1.10530.41760.43560.098*
O50.6547 (5)−0.0238 (4)0.0811 (5)0.130 (2)0.50
H5A0.65160.01480.11990.195*0.50
C190.5593 (8)−0.0440 (7)0.0398 (6)0.123 (3)0.50
H19A0.51730.00730.02310.185*0.50
H19B0.5258−0.07850.08230.185*0.50
H19C0.5626−0.0762−0.01740.185*0.50
O10.38934 (14)0.50044 (13)0.08744 (14)0.0760 (5)
H1A0.38770.47020.03740.114*
H1B0.43830.53700.08410.114*
O20.6051 (2)0.73482 (18)0.27534 (18)0.1147 (9)
H2A0.61070.70260.22960.172*
H2B0.65810.72890.31990.172*
O30.6009 (3)0.6933 (2)0.46268 (19)0.1391 (11)
H3A0.54280.69090.42100.209*
H3B0.59190.73880.49380.209*
O40.3845 (3)0.4064 (2)0.25444 (18)0.1355 (10)
H4A0.39130.44170.21140.203*
H4B0.38360.35590.23500.203*
Cl20.58501 (5)0.62937 (4)0.07857 (5)0.07005 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.05202 (15)0.03657 (13)0.04530 (14)−0.00040 (9)0.01102 (10)0.00375 (9)
Cl10.1459 (7)0.0368 (3)0.0565 (3)0.0098 (3)0.0171 (4)0.0002 (2)
N10.0476 (9)0.0430 (8)0.0478 (8)−0.0077 (7)0.0150 (7)−0.0046 (6)
N20.0480 (9)0.0485 (9)0.0462 (8)0.0079 (7)0.0078 (7)−0.0106 (7)
N30.0440 (8)0.0371 (7)0.0465 (8)−0.0030 (6)0.0150 (6)0.0028 (6)
N40.0412 (7)0.0366 (7)0.0423 (8)−0.0017 (6)0.0132 (6)0.0050 (6)
N50.0451 (8)0.0440 (8)0.0481 (9)0.0087 (6)0.0147 (7)0.0099 (7)
N60.0430 (9)0.0481 (9)0.0521 (9)−0.0002 (7)0.0025 (7)0.0122 (7)
N70.0399 (8)0.0383 (8)0.0425 (7)0.0049 (6)0.0106 (6)0.0043 (6)
N80.0379 (7)0.0365 (7)0.0405 (7)0.0032 (6)0.0101 (6)0.0033 (6)
C10.0536 (12)0.0569 (13)0.0624 (13)−0.0135 (10)0.0162 (10)−0.0089 (10)
C20.0450 (10)0.0635 (14)0.0624 (13)−0.0067 (9)0.0094 (9)−0.0179 (10)
C30.0449 (9)0.0368 (8)0.0403 (9)0.0034 (7)0.0108 (7)−0.0082 (7)
C40.0479 (9)0.0322 (8)0.0356 (8)0.0038 (7)0.0131 (7)−0.0027 (6)
C50.0636 (12)0.0383 (9)0.0364 (8)0.0039 (8)0.0161 (8)0.0031 (7)
C60.0598 (11)0.0327 (8)0.0463 (9)0.0000 (7)0.0248 (8)0.0012 (7)
C70.0657 (14)0.0666 (15)0.0504 (11)0.0174 (11)0.0029 (10)−0.0034 (10)
C80.0776 (15)0.0408 (11)0.0663 (13)−0.0104 (9)0.0347 (11)0.0020 (9)
C90.0494 (12)0.0639 (14)0.0715 (14)−0.0105 (10)0.0036 (10)0.0135 (11)
C100.0514 (11)0.0585 (12)0.0633 (13)0.0173 (9)0.0188 (10)0.0174 (10)
C110.0438 (11)0.0633 (13)0.0666 (14)0.0114 (9)0.0073 (9)0.0216 (11)
C120.0393 (9)0.0391 (9)0.0452 (9)0.0011 (7)0.0096 (7)0.0129 (7)
C130.0418 (9)0.0335 (8)0.0373 (8)−0.0018 (6)0.0097 (7)0.0066 (6)
C140.0544 (11)0.0415 (10)0.0427 (9)0.0012 (8)0.0084 (8)−0.0016 (7)
C150.0533 (11)0.0377 (9)0.0459 (9)0.0048 (7)0.0172 (8)0.0016 (7)
C160.0481 (11)0.0620 (13)0.0577 (12)0.0108 (9)0.0016 (9)−0.0007 (10)
C170.0730 (15)0.0591 (14)0.0723 (15)0.0229 (11)0.0205 (12)−0.0053 (11)
C180.0644 (14)0.0619 (14)0.0622 (13)−0.0024 (11)−0.0085 (11)0.0021 (11)
O50.141 (5)0.120 (5)0.152 (5)0.030 (4)0.087 (4)0.050 (4)
C190.127 (7)0.145 (8)0.113 (6)0.004 (6)0.060 (5)0.030 (5)
O10.0805 (12)0.0732 (11)0.0803 (11)−0.0101 (9)0.0307 (9)−0.0129 (10)
O20.139 (2)0.123 (2)0.0857 (16)−0.0216 (16)0.0300 (15)−0.0303 (14)
O30.176 (3)0.147 (3)0.0957 (17)0.028 (2)0.0274 (18)−0.0217 (18)
O40.195 (3)0.115 (2)0.0959 (17)−0.022 (2)0.0239 (18)0.0127 (15)
Cl20.0692 (4)0.0644 (4)0.0750 (4)−0.0088 (3)0.0097 (3)−0.0167 (3)

Geometric parameters (Å, °)

Cu1—N11.9531 (17)C8—H8B0.96
Cu1—N51.9545 (17)C8—H8C0.96
Cu1—N42.2161 (14)C9—H9A0.96
Cu1—N82.2415 (14)C9—H9B0.96
Cu1—Cl12.2739 (6)C9—H9C0.96
N1—C31.320 (2)C10—C111.351 (4)
N1—C11.374 (3)C10—H100.93
N2—C31.348 (2)C11—H110.93
N2—C21.368 (3)C12—C131.453 (2)
N2—C71.456 (3)C13—C141.390 (3)
N3—C61.350 (2)C14—C151.372 (3)
N3—N41.357 (2)C14—H140.93
N3—C91.450 (3)C15—C171.499 (3)
N4—C41.340 (2)C16—H16A0.96
N5—C121.314 (3)C16—H16B0.96
N5—C101.374 (3)C16—H16C0.96
N6—C121.346 (2)C17—H17A0.96
N6—C111.374 (3)C17—H17B0.96
N6—C181.467 (3)C17—H17C0.96
N7—C151.349 (2)C18—H18A0.96
N7—N81.354 (2)C18—H18B0.96
N7—C161.445 (3)C18—H18C0.96
N8—C131.337 (2)O5—C191.266 (10)
C1—C21.358 (3)O5—H5A0.82
C1—H10.93C19—H19A0.96
C2—H20.93C19—H19B0.96
C3—C41.450 (3)C19—H19C0.96
C4—C51.397 (2)O1—H1A0.85
C5—C61.372 (3)O1—H1B0.84
C5—H50.93O2—H2A0.83
C6—C81.493 (3)O2—H2B0.83
C7—H7A0.96O3—H3A0.85
C7—H7B0.96O3—H3B0.85
C7—H7C0.96O4—H4A0.84
C8—H8A0.96O4—H4B0.83
N1—Cu1—N5173.03 (7)C6—C8—H8B109.5
N1—Cu1—N478.45 (6)H8A—C8—H8B109.5
N5—Cu1—N497.22 (6)C6—C8—H8C109.5
N1—Cu1—N897.33 (6)H8A—C8—H8C109.5
N5—Cu1—N877.82 (6)H8B—C8—H8C109.5
N4—Cu1—N898.90 (6)N3—C9—H9A109.5
N1—Cu1—Cl193.19 (5)N3—C9—H9B109.5
N5—Cu1—Cl193.78 (5)H9A—C9—H9B109.5
N4—Cu1—Cl1128.60 (4)N3—C9—H9C109.5
N8—Cu1—Cl1132.50 (4)H9A—C9—H9C109.5
C3—N1—C1107.14 (17)H9B—C9—H9C109.5
C3—N1—Cu1117.07 (13)C11—C10—N5108.7 (2)
C1—N1—Cu1135.76 (15)C11—C10—H10125.6
C3—N2—C2107.22 (17)N5—C10—H10125.6
C3—N2—C7127.23 (19)C10—C11—N6106.85 (18)
C2—N2—C7125.53 (19)C10—C11—H11126.6
C6—N3—N4111.62 (15)N6—C11—H11126.6
C6—N3—C9127.65 (16)N5—C12—N6110.84 (16)
N4—N3—C9120.72 (15)N5—C12—C13119.79 (16)
C4—N4—N3105.15 (14)N6—C12—C13129.37 (18)
C4—N4—Cu1110.79 (11)N8—C13—C14111.07 (16)
N3—N4—Cu1144.00 (11)N8—C13—C12113.71 (15)
C12—N5—C10106.69 (18)C14—C13—C12135.21 (17)
C12—N5—Cu1117.93 (12)C15—C14—C13105.27 (16)
C10—N5—Cu1135.37 (15)C15—C14—H14127.4
C12—N6—C11106.90 (18)C13—C14—H14127.4
C12—N6—C18127.53 (18)N7—C15—C14107.11 (16)
C11—N6—C18125.55 (18)N7—C15—C17122.55 (19)
C15—N7—N8111.44 (15)C14—C15—C17130.34 (19)
C15—N7—C16127.86 (16)N7—C16—H16A109.5
N8—N7—C16120.70 (15)N7—C16—H16B109.5
C13—N8—N7105.10 (14)H16A—C16—H16B109.5
C13—N8—Cu1110.70 (11)N7—C16—H16C109.5
N7—N8—Cu1144.10 (11)H16A—C16—H16C109.5
C2—C1—N1108.2 (2)H16B—C16—H16C109.5
C2—C1—H1125.9C15—C17—H17A109.5
N1—C1—H1125.9C15—C17—H17B109.5
C1—C2—N2107.16 (19)H17A—C17—H17B109.5
C1—C2—H2126.4C15—C17—H17C109.5
N2—C2—H2126.4H17A—C17—H17C109.5
N1—C3—N2110.32 (17)H17B—C17—H17C109.5
N1—C3—C4119.69 (16)N6—C18—H18A109.5
N2—C3—C4129.94 (17)N6—C18—H18B109.5
N4—C4—C5110.70 (16)H18A—C18—H18B109.5
N4—C4—C3113.73 (15)N6—C18—H18C109.5
C5—C4—C3135.56 (17)H18A—C18—H18C109.5
C6—C5—C4105.54 (16)H18B—C18—H18C109.5
C6—C5—H5127.2C19—O5—H5A109.5
C4—C5—H5127.2O5—C19—H19A109.5
N3—C6—C5106.99 (16)O5—C19—H19B109.5
N3—C6—C8122.76 (19)H19A—C19—H19B109.5
C5—C6—C8130.25 (18)O5—C19—H19C109.5
N2—C7—H7A109.5H19A—C19—H19C109.5
N2—C7—H7B109.5H19B—C19—H19C109.5
H7A—C7—H7B109.5H1A—O1—H1B103.3
N2—C7—H7C109.5H2A—O2—H2B110.7
H7A—C7—H7C109.5H3A—O3—H3B102.6
H7B—C7—H7C109.5H4A—O4—H4B111.9
C6—C8—H8A109.5
N4—Cu1—N1—C3−4.61 (13)C2—N2—C3—C4176.81 (18)
N8—Cu1—N1—C393.03 (14)C7—N2—C3—C4−4.9 (3)
Cl1—Cu1—N1—C3−133.39 (13)N3—N4—C4—C50.24 (19)
N4—Cu1—N1—C1177.6 (2)Cu1—N4—C4—C5178.19 (11)
N8—Cu1—N1—C1−84.8 (2)N3—N4—C4—C3179.21 (14)
Cl1—Cu1—N1—C148.8 (2)Cu1—N4—C4—C3−2.84 (17)
C6—N3—N4—C4−0.30 (19)N1—C3—C4—N4−0.8 (2)
C9—N3—N4—C4−179.64 (18)N2—C3—C4—N4−178.02 (17)
C6—N3—N4—Cu1−177.04 (15)N1—C3—C4—C5177.79 (19)
C9—N3—N4—Cu13.6 (3)N2—C3—C4—C50.6 (3)
N1—Cu1—N4—C44.05 (12)N4—C4—C5—C6−0.1 (2)
N5—Cu1—N4—C4−170.41 (12)C3—C4—C5—C6−178.75 (19)
N8—Cu1—N4—C4−91.68 (12)N4—N3—C6—C50.2 (2)
Cl1—Cu1—N4—C488.86 (12)C9—N3—C6—C5179.53 (19)
N1—Cu1—N4—N3−179.3 (2)N4—N3—C6—C8−178.74 (17)
N5—Cu1—N4—N36.2 (2)C9—N3—C6—C80.5 (3)
N8—Cu1—N4—N384.9 (2)C4—C5—C6—N3−0.1 (2)
Cl1—Cu1—N4—N3−94.5 (2)C4—C5—C6—C8178.80 (19)
N4—Cu1—N5—C1295.69 (14)C12—N5—C10—C11−0.5 (2)
N8—Cu1—N5—C12−1.91 (13)Cu1—N5—C10—C11178.32 (15)
Cl1—Cu1—N5—C12−134.62 (13)N5—C10—C11—N60.4 (3)
N4—Cu1—N5—C10−83.1 (2)C12—N6—C11—C10−0.1 (2)
N8—Cu1—N5—C10179.3 (2)C18—N6—C11—C10178.7 (2)
Cl1—Cu1—N5—C1046.61 (19)C10—N5—C12—N60.5 (2)
C15—N7—N8—C13−0.05 (19)Cu1—N5—C12—N6−178.63 (12)
C16—N7—N8—C13179.66 (17)C10—N5—C12—C13−179.30 (16)
C15—N7—N8—Cu1−175.72 (15)Cu1—N5—C12—C131.6 (2)
C16—N7—N8—Cu14.0 (3)C11—N6—C12—N5−0.2 (2)
N1—Cu1—N8—C13−172.90 (11)C18—N6—C12—N5−179.04 (19)
N5—Cu1—N8—C132.02 (11)C11—N6—C12—C13179.52 (18)
N4—Cu1—N8—C13−93.51 (11)C18—N6—C12—C130.7 (3)
Cl1—Cu1—N8—C1385.92 (12)N7—N8—C13—C140.25 (18)
N1—Cu1—N8—N72.63 (19)Cu1—N8—C13—C14177.54 (12)
N5—Cu1—N8—N7177.6 (2)N7—N8—C13—C12−179.07 (13)
N4—Cu1—N8—N782.02 (19)Cu1—N8—C13—C12−1.78 (17)
Cl1—Cu1—N8—N7−98.55 (19)N5—C12—C13—N80.3 (2)
C3—N1—C1—C2−0.7 (2)N6—C12—C13—N8−179.36 (17)
Cu1—N1—C1—C2177.22 (15)N5—C12—C13—C14−178.76 (19)
N1—C1—C2—N20.4 (2)N6—C12—C13—C141.5 (3)
C3—N2—C2—C10.1 (2)N8—C13—C14—C15−0.4 (2)
C7—N2—C2—C1−178.17 (19)C12—C13—C14—C15178.76 (19)
C1—N1—C3—N20.8 (2)N8—N7—C15—C14−0.2 (2)
Cu1—N1—C3—N2−177.57 (11)C16—N7—C15—C14−179.86 (19)
C1—N1—C3—C4−176.90 (16)N8—N7—C15—C17179.76 (18)
Cu1—N1—C3—C44.7 (2)C16—N7—C15—C170.1 (3)
C2—N2—C3—N1−0.6 (2)C13—C14—C15—N70.3 (2)
C7—N2—C3—N1177.67 (18)C13—C14—C15—C17−179.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl2i0.852.333.162 (2)167
O1—H1B···Cl20.842.343.186 (2)175
O2—H2A···Cl20.832.393.205 (3)165
O3—H3B···Cl2ii0.852.383.234 (3)174
O4—H4A···O10.841.982.793 (3)165
O4—H4B···O2iii0.831.892.706 (4)165
C11—H11···Cl2iv0.932.753.592 (2)151
C18—H18C···Cl1v0.962.763.708 (3)177

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, −y+3/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+2, y−1/2, −z+1/2; (v) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2996).

References

  • Allen, C. F. H. & Wilson, B. D. (1963). US Patent No. 3 106 467.
  • Bouhaddioui, S. (1993). Thèse de doctorat d’état, Université Mohammed 1er, Faculté des Sciences Oujda, Morocco.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • El-Khawass, E. S. M. & Bistawroos, A. E. (1990). Alex. J. Pharm. Sci.4, 77–79.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hartfiel, U., Dorfmeister, G., Franke, H., Geisler, J., Johann, G. & Rees, R. (1993). Eur. Patent Appl. EP 542 388.
  • Pearson, I. (1975). US Patent No. 3 883 549.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]
  • Tjiou, E. M., Fruchier, A., Pellegerin, V. & Tarago, G. (1989). J. Heterocycl. Chem.26, 893–898.
  • Trofimenko, S. (1993). Chem. Rev.93, 943–980.
  • Tsuboi, S., Moriie, K., Hatsutori, Y., Wada, K., Sone, S., Oohigata, T. & Ito, A. (1994). Jpn Kokai Tokkyo Koho, JP 06 184 114.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography