PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m124.
Published online 2010 January 9. doi:  10.1107/S1600536810000103
PMCID: PMC2979770

Dichlorido[N,N-diethyl-N′-(2-pyridyl­methyl­ene)ethane-1,2-diamine]mercury(II)

Abstract

The Hg atom in the title compound, [HgCl2(C12H19N3)], adopts a distorted trigonal-bipyramidal geometry, being ligated by two Cl atoms and three N atoms of the N,N-diethyl-N′-(2-pyridylmethyl­ene)ethane-1,2-diamine ligand. The dihedral angle between the HgN3 and HgCl2 least-squares planes is 88.6 (1)°. The Hg—N distances including the pyridine N and the ammonium N atom are about 0.20 Å longer than the Hg—N distance including the imino N atom.

Related literature

For general background to luminescent mercury compounds, see: Elena et al. (2006 [triangle]); Durantaye et al. (2006 [triangle]); Fan et al. (2009 [triangle]). For the syntheses and structures of these compounds, see: Kim et al. (2008 [triangle]); Seo et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m124-scheme1.jpg

Experimental

Crystal data

  • [HgCl2(C12H19N3)]
  • M r = 476.79
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m124-efi1.jpg
  • a = 8.0028 (5) Å
  • b = 16.6507 (9) Å
  • c = 12.4541 (8) Å
  • β = 101.630 (5)°
  • V = 1625.47 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 9.79 mm−1
  • T = 295 K
  • 0.27 × 0.24 × 0.23 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.085, T max = 0.102
  • 17026 measured reflections
  • 4039 independent reflections
  • 3124 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.059
  • S = 1.04
  • 4039 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.71 e Å−3
  • Δρmin = −0.92 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810000103/tk2606sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000103/tk2606Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NO. 2009–0066594).

supplementary crystallographic information

Comment

Much attention has been paid to the design and synthesis of luminescent mercury compounds for the detection and extraction of the mercury (Elena et al., 2006; Durantaye et al., 2006), among which, Hg(II) complexes with pyridine-containing ligands are of importance for their high luminescent efficiency (Fan et al., 2009). Recently, we reported Hg(II) compounds with bis(2-pyridylmethyl)amine (Kim et al., 2008) and with benzyl(2-pyridylmethyl)amine (Seo et al., 2009) as a development of blue fluorescent materials. In this work, we prepared a Hg(II) complex with N,N-diethyl-N'-pyridine-2-ylmethylene-ethene-1,2-diamine (depmed), and its structure and luminescent properties were investigated.

In the title compound, (I), the Hg atom is 5-coordinated by two Cl atoms and three N atoms of the tridentate depmed ligand. The coordination geometry around Hg atom is based on a distorted trigonal bipyramid with the equatorial plane defined by N8, Cl1, and Cl2 atoms, with the other N atoms occupying axial positions. The dihedral angle between the least-squares planes through the N1/N8/N11/Hg atoms and that through the HgCl2 atoms is 88.6 (1)°; the bond angle of N1—Hg—N11 is 139.2 (1)°. The Hg–N1 and Hg–N11 bond distances are each about 0.20Å longer than the Hg–N8 bond distance, Table 1.

The free ligand (depmed) showed strong blue (λmax,PL = 491 nm in DMF) fluorescent emissions upon 280 nm excitation, while Hg(depmed)Cl2 displayed two blue emission (λmax,PL = 309 and 389 nm in DMF) which was tentatively assigned to be an intraligand (IL) 1π-π* transition. The PL quantum yield (f) versus 9,10-diphenylanthracene was measured to be 0.29% and 0.04% for free ligand (depmed) and Hg(depmed)Cl2, respectively.

Experimental

All of the reagents and solvents were purchased from Aldrich and used without further purification. The N,N-diethyl-N'-pyridine-2-ylmethylene-ethene-1,2-diamine (L) was synthesized by reacting N,N-diethyl-ethylenediamine (15 mmol) and 2-pyridinecarboxaldehyde (15 mmol) in methanol (50 ml). The mixture was stirred for 3 h at room temperature and the solution was evaporated to dryness. The residue was extracted with dichloromethane to give depmed as yellow oil. A solution depmed (5 mmol) in methanol (15 ml) was added slowly to a solution of mercuric chloride (5 mmol) in methanol (15 ml). The mixture was stirred for 12 h at room temperature. The resultant precipitate was collected by filtration and washed several times with cool methanol. The precipitate was dried over vacuum in an oven at room temperature. The crystals were obtained by slow evaporation in a methanol solution. Yield: 53%. Anal. Calcd. for C12H19N3Cl2Hg: C, 30.23; H, 4.02; N, 8.81. Found: C, 29.97; H, 4.21; N, 8.76. 1H-NMR (300 MHz, d6-DMSO) δ; 8.95 (1H, d, J=4.2 Hz), 8.57 (1H, s), 7.97 (1H, t, J=7.8 Hz), 7.62–7.68 (2H, m), 3.82 (2H, t, J=6.5 Hz), 2.94–3.08 (6H, m), 1.19 (6H, s).

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.97 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic- and methylene-H, and 1.5Ueq(C) for methyl-H atoms.

Figures

Fig. 1.
Molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids.

Crystal data

[HgCl2(C12H19N3)]F(000) = 904
Mr = 476.79Dx = 1.948 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5949 reflections
a = 8.0028 (5) Åθ = 2.5–26.4°
b = 16.6507 (9) ŵ = 9.79 mm1
c = 12.4541 (8) ÅT = 295 K
β = 101.630 (5)°Block, colourless
V = 1625.47 (17) Å30.27 × 0.24 × 0.23 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3124 reflections with I > 2σ(I)
[var phi] and ω scansRint = 0.029
Absorption correction: multi-scan (SADABS; Bruker, 2002)θmax = 28.3°, θmin = 2.1°
Tmin = 0.085, Tmax = 0.102h = −10→10
17026 measured reflectionsk = −22→22
4039 independent reflectionsl = −14→16

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026w = 1/[σ2(Fo2) + (0.026P)2 + 0.5659P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.71 e Å3
4039 reflectionsΔρmin = −0.92 e Å3
163 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Hg10.208069 (19)0.190628 (9)0.561325 (12)0.05266 (7)
Cl10.04834 (16)0.20511 (8)0.70474 (10)0.0766 (3)
Cl20.06896 (15)0.15227 (8)0.37542 (9)0.0756 (3)
N10.3474 (4)0.0549 (2)0.6108 (3)0.0533 (8)
C20.2740 (6)−0.0156 (3)0.6201 (4)0.0654 (11)
H20.1555−0.01770.60570.078*
C30.3629 (7)−0.0862 (3)0.6499 (4)0.0697 (12)
H30.3058−0.13420.65530.084*
C40.5359 (7)−0.0830 (3)0.6708 (4)0.0731 (13)
H40.5996−0.12920.69150.088*
C50.6169 (6)−0.0108 (3)0.6612 (3)0.0659 (11)
H50.7353−0.00780.67450.079*
C60.5184 (5)0.0570 (2)0.6313 (3)0.0527 (9)
C70.5949 (5)0.1352 (3)0.6185 (3)0.0584 (10)
H70.7130.13910.62830.07*
N80.5056 (4)0.19763 (19)0.5946 (3)0.0554 (8)
C90.5810 (6)0.2749 (3)0.5783 (4)0.0706 (12)
H9A0.69060.26710.55780.085*
H9B0.5990.30570.64580.085*
C100.4618 (7)0.3196 (2)0.4886 (4)0.0721 (14)
H10A0.51110.37150.47820.087*
H10B0.4510.28990.42060.087*
N110.2900 (5)0.33175 (19)0.5129 (3)0.0545 (8)
C120.2909 (6)0.3827 (2)0.6098 (3)0.0597 (10)
H12A0.35440.35490.67360.072*
H12B0.17430.3880.61970.072*
C130.3658 (7)0.4666 (3)0.6073 (4)0.0860 (15)
H13A0.36040.49420.67420.129*
H13B0.30160.4960.54630.129*
H13C0.48250.46270.59960.129*
C140.1738 (7)0.3608 (3)0.4138 (4)0.0836 (15)
H14A0.17830.32410.3540.1*
H14B0.21340.41280.39420.1*
C15−0.0096 (8)0.3686 (4)0.4267 (5)0.112 (2)
H15A−0.07820.38810.35950.168*
H15B−0.01570.40570.48490.168*
H15C−0.0510.31710.4440.168*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.04281 (9)0.06545 (11)0.05013 (10)−0.00279 (7)0.01033 (7)0.00321 (7)
Cl10.0616 (7)0.1078 (9)0.0680 (7)−0.0054 (6)0.0312 (6)−0.0045 (6)
Cl20.0637 (7)0.0923 (8)0.0615 (7)−0.0041 (6)−0.0097 (6)−0.0122 (6)
N10.0474 (18)0.065 (2)0.0478 (18)0.0010 (15)0.0114 (15)0.0030 (15)
C20.060 (3)0.076 (3)0.066 (3)−0.002 (2)0.025 (2)0.011 (2)
C30.082 (3)0.070 (3)0.065 (3)−0.001 (2)0.033 (3)0.011 (2)
C40.092 (4)0.068 (3)0.062 (3)0.023 (3)0.024 (3)0.014 (2)
C50.057 (3)0.080 (3)0.059 (3)0.020 (2)0.009 (2)0.000 (2)
C60.051 (2)0.067 (2)0.040 (2)0.0014 (19)0.0081 (17)−0.0043 (17)
C70.037 (2)0.080 (3)0.058 (2)0.003 (2)0.0084 (18)−0.014 (2)
N80.0451 (18)0.066 (2)0.057 (2)−0.0078 (15)0.0133 (16)−0.0080 (16)
C90.052 (3)0.069 (3)0.095 (4)−0.008 (2)0.025 (3)−0.004 (3)
C100.089 (4)0.063 (3)0.078 (3)−0.019 (2)0.050 (3)−0.005 (2)
N110.065 (2)0.0620 (19)0.0372 (17)−0.0039 (16)0.0116 (16)0.0066 (14)
C120.068 (3)0.066 (3)0.047 (2)0.003 (2)0.016 (2)0.0030 (19)
C130.115 (4)0.070 (3)0.078 (3)−0.006 (3)0.031 (3)−0.012 (3)
C140.115 (5)0.080 (3)0.048 (3)−0.004 (3)−0.003 (3)0.019 (2)
C150.099 (5)0.117 (5)0.102 (4)0.024 (4)−0.024 (4)0.018 (4)

Geometric parameters (Å, °)

Hg1—Cl12.4088 (11)C9—H9A0.97
Hg1—Cl22.4431 (11)C9—H9B0.97
Hg1—N12.540 (3)C10—N111.480 (6)
Hg1—N82.336 (3)C10—H10A0.97
Hg1—N112.544 (3)C10—H10B0.97
N1—C21.328 (5)N11—C141.470 (5)
N1—C61.341 (5)N11—C121.473 (5)
C2—C31.385 (6)C12—C131.524 (6)
C2—H20.93C12—H12A0.97
C3—C41.357 (6)C12—H12B0.97
C3—H30.93C13—H13A0.96
C4—C51.384 (6)C13—H13B0.96
C4—H40.93C13—H13C0.96
C5—C61.383 (6)C14—C151.514 (8)
C5—H50.93C14—H14A0.97
C6—C71.462 (6)C14—H14B0.97
C7—N81.262 (5)C15—H15A0.96
C7—H70.93C15—H15B0.96
N8—C91.452 (5)C15—H15C0.96
C9—C101.511 (7)
N8—Hg1—Cl1122.54 (9)C10—C9—H9B109.9
N8—Hg1—Cl2115.75 (9)H9A—C9—H9B108.3
Cl1—Hg1—Cl2121.35 (4)N11—C10—C9113.0 (3)
N8—Hg1—N167.63 (11)N11—C10—H10A109
Cl1—Hg1—N1100.47 (8)C9—C10—H10A109
Cl2—Hg1—N195.24 (8)N11—C10—H10B109
N8—Hg1—N1172.16 (12)C9—C10—H10B109
Cl1—Hg1—N11106.49 (8)H10A—C10—H10B107.8
Cl2—Hg1—N1196.14 (8)C14—N11—C12113.3 (4)
N1—Hg1—N11139.24 (11)C14—N11—C10109.3 (4)
C2—N1—C6117.3 (4)C12—N11—C10113.2 (4)
C2—N1—Hg1128.9 (3)C14—N11—Hg1110.7 (3)
C6—N1—Hg1113.9 (3)C12—N11—Hg1107.2 (2)
N1—C2—C3124.1 (4)C10—N11—Hg1102.5 (2)
N1—C2—H2117.9N11—C12—C13116.6 (3)
C3—C2—H2117.9N11—C12—H12A108.1
C4—C3—C2117.9 (4)C13—C12—H12A108.1
C4—C3—H3121.1N11—C12—H12B108.1
C2—C3—H3121.1C13—C12—H12B108.1
C3—C4—C5119.6 (4)H12A—C12—H12B107.3
C3—C4—H4120.2C12—C13—H13A109.5
C5—C4—H4120.2C12—C13—H13B109.5
C6—C5—C4118.7 (4)H13A—C13—H13B109.5
C6—C5—H5120.6C12—C13—H13C109.5
C4—C5—H5120.6H13A—C13—H13C109.5
N1—C6—C5122.4 (4)H13B—C13—H13C109.5
N1—C6—C7115.8 (3)N11—C14—C15113.7 (4)
C5—C6—C7121.8 (4)N11—C14—H14A108.8
N8—C7—C6122.0 (4)C15—C14—H14A108.8
N8—C7—H7119N11—C14—H14B108.8
C6—C7—H7119C15—C14—H14B108.8
C7—N8—C9122.0 (4)H14A—C14—H14B107.7
C7—N8—Hg1120.6 (3)C14—C15—H15A109.5
C9—N8—Hg1117.2 (3)C14—C15—H15B109.5
N8—C9—C10108.7 (4)H15A—C15—H15B109.5
N8—C9—H9A109.9C14—C15—H15C109.5
C10—C9—H9A109.9H15A—C15—H15C109.5
N8—C9—H9B109.9H15B—C15—H15C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2606).

References

  • Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Durantaye, L. D. L., McCormick, T., Liu, X.-Y. & Wang, S. (2006). Dalton Trans. pp. 5675–5682. [PubMed]
  • Elena, L.-T., Antoina, M. & Ceser, J. P. (2006). Polyhedron, 25, 1464–1470.
  • Fan, B., Yang, Y., Yin, Y., Hasi, W. & Mu, Y. (2009). Inorg. Chem.48, 6034–6043. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kim, Y.-I., Lee, Y.-S., Seo, H.-J., Nam, K.-S. & Kang, S. K. (2008). Acta Cryst. E64, m358. [PMC free article] [PubMed]
  • Seo, H.-J., Kim, Y.-I., Lee, Y.-S. & Kang, S. K. (2009). Acta Cryst. E65, m55. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography