PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m233–m234.
Published online 2010 January 30. doi:  10.1107/S1600536810003247
PMCID: PMC2979766

Bis{μ-4,4′-dibromo-2,2′-[o-phenyl­enebis(nitrilo­methyl­idyne)]diphenolato}bis­[chloridomanganese(III)] N,N-dimethyl­formamide disolvate

Abstract

The asymmetric unit of the title compound, [Mn2(C20H12Br2N2O2)2Cl2]·2C3H7NO, contains one half of a centrosymmetric dinuclear MnIII complex and an N,N-dimethyl­formamide solvent mol­ecule. In the complex, the two MnIII ions are bridged by two O atoms from two symmetry-related N,N′-bis­(5-bromo­salicyl­idene)-1,2-diimino­benzene dianionic ligands with the longer Mn—O distance of 2.703 (3) Å, thus each Mn ion is six-coordinated by two N and three O atoms from the two dianionic ligands and one capping Cl atom in a distorted octa­hedral environment. The crystal structure displays inter­molecular π–π inter­actions between adjacent benzene rings, with a shortest centroid–centroid distance of 3.673 (2) Å, and inter­molecular C—H(...)O, C—H(...) Cl and C—H(...) Br hydrogen bonds.

Related literature

For the crystal structure of dinuclear [Mn(salen)(H2O)]2(ClO4)2 (H2salen = N,N′-bis­(salicyl­idene)ethyl­enediimine), see: Shyu et al. (1999 [triangle]). For the crystal structures of 5-bromo­salicylideneimine–Mn(III) complexes, see: Dang et al. (2005 [triangle]); Hwang & Ha (2007 [triangle]); Mitra et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m233-scheme1.jpg

Experimental

Crystal data

  • [Mn2(C20H12Br2N2O2)2Cl2]·2C3H7NO
  • M r = 1271.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m233-efi1.jpg
  • a = 9.7804 (6) Å
  • b = 20.1342 (12) Å
  • c = 11.8593 (6) Å
  • β = 90.938 (1)°
  • V = 2335.0 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.13 mm−1
  • T = 200 K
  • 0.26 × 0.10 × 0.07 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.742, T max = 1.000
  • 17204 measured reflections
  • 5763 independent reflections
  • 3286 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.111
  • S = 1.01
  • 5763 reflections
  • 300 parameters
  • H-atom parameters constrained
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.87 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003247/xu2722sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003247/xu2722Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0074570).

supplementary crystallographic information

Comment

The title compound, [Mn(C20H12Br2N2O2)Cl]2.2(C3H7NO), consists of a structurally centrosymmetric dinuclear MnIII complex and two N,N-dimethylformamide solvent molecules, and the asymmetric unit contains one half of the formula unit (Fig. 1). In the complex, two MnIII ions are bridged by two phenolic O atoms from two symmetry-related N,N'-bis(5-bromosalicylidene)-1,2-diiminobenzene dianionic ligands, and the distance between the Mn atoms is 3.5277 (10) Å. Each Mn ion is six-coordinated by two N and three O atoms from the two dianionic ligands and one capping Cl atom in a distorted octahedral environment (Table 1). While the two Mn—N bond distances are nearly equal [1.991 (3) Å and 1.994 (3) Å], the three Mn—O bond lengths are somewhat different. The equatorial Mn1—O1/O2 bonds [1.869 (3) Å and 1.884 (3) Å] are considerably shorter than the axial Mn1—O2a bond [Symmetry code: (a) 1 - x, -y, 1 - z; 2.703 (3) Å]. Within the equatorial plane, the chelating angles lie in the range of 82.42 (14)°–92.38 (14)° and the <O1—Mn1—O2 bond angle is 90.84 (12)°. The apical <Cl1—Mn1—O2a bond angle is 173.85 (7)°. The crystal structure displays intermolecular π-π interactions between adjacent benzene rings, with a shortest centroid-centroid distance of 3.673 (2) Å, and intermolecular C—H···O/Cl/Br hydrogen bonds (Fig. 2 and Table 2).

Experimental

Mn(CH3CO2)3.2H2O (0.50 g, 1.86 mmol), NaCl (0.11 g, 1.88 mmol) and N,N'-bis(5-bromosalicylidene)-1,2-diiminobenzene (0.89 g, 1.88 mmol) in EtOH (50 ml) and acetone (20 ml) were stirred for 2 h at room temperature. The formed precipitate was separated by filtration and washed with acetone and ether and dried under vacuum, to give a dark brown powder (1.02 g). Crystals suitable for X-ray analysis were obtained by slow evaporation under vacuum from an N,N-dimethylformamide solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH) or 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(CH) or 1.5Ueq(CH3)].

Figures

Fig. 1.
The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms. Unlabelled atoms and Mn1a are related to labelled atoms by the symmetry operation [symmetry code: (a) 1 - x, -y, 1 - z].
Fig. 2.
View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[Mn2(C20H12Br2N2O2)2Cl2]·2C3H7NOF(000) = 1256
Mr = 1271.24Dx = 1.808 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3984 reflections
a = 9.7804 (6) Åθ = 2.3–27.8°
b = 20.1342 (12) ŵ = 4.13 mm1
c = 11.8593 (6) ÅT = 200 K
β = 90.938 (1)°Block, brown
V = 2335.0 (2) Å30.26 × 0.10 × 0.07 mm
Z = 2

Data collection

Bruker SMART 1000 CCD diffractometer5763 independent reflections
Radiation source: fine-focus sealed tube3286 reflections with I > 2σ(I)
graphiteRint = 0.067
[var phi] and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −13→13
Tmin = 0.742, Tmax = 1.000k = −26→25
17204 measured reflectionsl = −9→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0372P)2] where P = (Fo2 + 2Fc2)/3
5763 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = −0.87 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.33723 (7)0.03642 (3)0.48099 (5)0.02156 (17)
Br1−0.07312 (5)−0.20087 (3)0.13904 (4)0.04294 (17)
Br20.80307 (6)0.30297 (3)0.65558 (4)0.04307 (17)
Cl10.20464 (11)0.13541 (6)0.43825 (9)0.0301 (3)
O10.3251 (3)−0.00461 (15)0.3398 (2)0.0252 (7)
O20.5128 (3)0.06888 (14)0.4485 (2)0.0225 (7)
N10.1887 (3)−0.01986 (17)0.5427 (3)0.0200 (8)
N20.3604 (3)0.06227 (17)0.6425 (3)0.0200 (8)
C10.2337 (4)−0.0470 (2)0.3001 (3)0.0212 (10)
C20.2434 (5)−0.0675 (2)0.1874 (3)0.0259 (11)
H20.3143−0.04980.14250.031*
C30.1542 (5)−0.1118 (2)0.1405 (4)0.0276 (11)
H30.1631−0.12500.06410.033*
C40.0485 (4)−0.1379 (2)0.2063 (4)0.0253 (10)
C50.0369 (4)−0.1213 (2)0.3164 (4)0.0262 (11)
H5−0.0331−0.14070.36020.031*
C60.1289 (4)−0.0750 (2)0.3666 (4)0.0227 (10)
C70.1164 (4)−0.0620 (2)0.4843 (3)0.0221 (10)
H70.0489−0.08630.52350.027*
C80.1754 (4)−0.0142 (2)0.6626 (3)0.0203 (10)
C90.0778 (4)−0.0469 (2)0.7259 (4)0.0243 (10)
H90.0126−0.07510.69020.029*
C100.0767 (5)−0.0378 (2)0.8416 (4)0.0294 (11)
H100.0101−0.06000.88540.035*
C110.1716 (5)0.0031 (2)0.8938 (4)0.0294 (11)
H110.16990.00850.97330.035*
C120.2684 (5)0.0360 (2)0.8326 (4)0.0267 (11)
H120.33390.06360.86940.032*
C130.2693 (4)0.0283 (2)0.7156 (3)0.0211 (10)
C140.4430 (4)0.1081 (2)0.6771 (3)0.0241 (10)
H140.44220.11910.75500.029*
C150.5364 (4)0.1440 (2)0.6067 (3)0.0223 (10)
C160.6084 (4)0.1977 (2)0.6544 (4)0.0253 (10)
H160.59260.21040.73020.030*
C170.7015 (5)0.2317 (2)0.5916 (4)0.0246 (10)
C180.7236 (5)0.2148 (2)0.4793 (4)0.0272 (11)
H180.78520.24010.43540.033*
C190.6564 (4)0.1618 (2)0.4328 (4)0.0250 (10)
H190.67240.15040.35640.030*
C200.5642 (4)0.1237 (2)0.4949 (3)0.0218 (10)
O30.4905 (4)0.1586 (2)−0.0718 (3)0.0526 (11)
N30.3774 (5)0.1726 (2)0.0910 (3)0.0434 (11)
C210.4185 (5)0.1909 (3)−0.0094 (4)0.0394 (13)
H210.38930.2332−0.03580.047*
C220.2859 (6)0.2150 (3)0.1564 (5)0.0637 (19)
H22A0.26760.25610.11480.096*
H22B0.32940.22550.22930.096*
H22C0.19970.19150.16890.096*
C230.4163 (8)0.1103 (3)0.1379 (5)0.078 (2)
H23A0.48580.08970.09060.117*
H23B0.33610.08130.14130.117*
H23C0.45390.11700.21420.117*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0221 (4)0.0250 (4)0.0177 (4)−0.0037 (3)0.0021 (3)−0.0023 (3)
Br10.0400 (3)0.0505 (4)0.0382 (3)−0.0164 (3)−0.0034 (2)−0.0141 (3)
Br20.0603 (4)0.0382 (3)0.0309 (3)−0.0249 (3)0.0080 (2)−0.0088 (2)
Cl10.0297 (6)0.0288 (7)0.0318 (7)0.0011 (5)0.0009 (5)0.0034 (5)
O10.0263 (17)0.0306 (19)0.0187 (17)−0.0060 (14)−0.0014 (13)−0.0034 (13)
O20.0200 (16)0.0275 (18)0.0201 (16)−0.0051 (13)0.0049 (12)−0.0089 (13)
N10.0218 (19)0.020 (2)0.0180 (19)0.0009 (16)0.0016 (15)0.0020 (15)
N20.0219 (19)0.018 (2)0.020 (2)0.0006 (16)0.0005 (15)0.0017 (15)
C10.023 (2)0.023 (3)0.017 (2)0.0026 (19)−0.0062 (18)0.0007 (18)
C20.027 (3)0.032 (3)0.019 (2)0.000 (2)0.0018 (19)−0.0005 (19)
C30.034 (3)0.034 (3)0.015 (2)−0.003 (2)−0.003 (2)−0.0078 (19)
C40.029 (3)0.022 (3)0.025 (3)−0.001 (2)−0.007 (2)−0.0041 (19)
C50.023 (2)0.029 (3)0.026 (3)−0.004 (2)−0.0028 (19)0.000 (2)
C60.023 (2)0.019 (3)0.026 (3)0.0016 (19)0.0013 (19)−0.0022 (18)
C70.020 (2)0.022 (3)0.024 (3)−0.0032 (19)0.0052 (18)0.0011 (18)
C80.025 (2)0.019 (2)0.017 (2)0.0045 (19)0.0041 (18)0.0002 (17)
C90.021 (2)0.024 (3)0.029 (3)0.0021 (19)0.0034 (19)0.0030 (19)
C100.034 (3)0.033 (3)0.021 (3)0.000 (2)0.010 (2)0.006 (2)
C110.039 (3)0.029 (3)0.019 (2)−0.001 (2)0.005 (2)0.000 (2)
C120.029 (3)0.031 (3)0.020 (2)0.002 (2)0.0002 (19)−0.002 (2)
C130.026 (2)0.020 (3)0.018 (2)0.0038 (19)0.0045 (18)0.0005 (18)
C140.031 (3)0.030 (3)0.012 (2)0.000 (2)−0.0021 (18)−0.0038 (18)
C150.025 (2)0.021 (3)0.021 (2)0.0032 (19)0.0020 (18)0.0026 (18)
C160.031 (3)0.025 (3)0.020 (2)−0.001 (2)0.0001 (19)−0.0046 (19)
C170.032 (3)0.018 (2)0.024 (3)0.000 (2)0.001 (2)−0.0014 (19)
C180.037 (3)0.021 (3)0.023 (3)−0.004 (2)0.006 (2)0.0027 (19)
C190.031 (3)0.028 (3)0.017 (2)−0.003 (2)0.0021 (19)0.0000 (19)
C200.022 (2)0.024 (3)0.020 (2)0.002 (2)−0.0001 (18)0.0000 (18)
O30.059 (3)0.065 (3)0.033 (2)−0.010 (2)0.0096 (19)−0.0239 (19)
N30.057 (3)0.046 (3)0.027 (2)−0.011 (2)0.010 (2)−0.001 (2)
C210.043 (3)0.047 (4)0.028 (3)−0.014 (3)−0.005 (2)−0.004 (2)
C220.073 (5)0.069 (5)0.050 (4)−0.009 (4)0.026 (3)−0.006 (3)
C230.117 (7)0.058 (5)0.059 (5)−0.005 (4)−0.006 (4)0.014 (4)

Geometric parameters (Å, °)

Mn1—O11.869 (3)C10—C111.380 (6)
Mn1—O21.884 (3)C10—H100.9500
Mn1—O2i2.703 (3)C11—C121.373 (6)
Mn1—N11.991 (3)C11—H110.9500
Mn1—N21.994 (3)C12—C131.397 (6)
Mn1—Cl12.4268 (13)C12—H120.9500
Br1—C41.904 (4)C14—C151.441 (6)
Br2—C171.896 (4)C14—H140.9500
O1—C11.318 (5)C15—C161.406 (6)
O2—C201.328 (5)C15—C201.418 (6)
N1—C71.297 (5)C16—C171.369 (6)
N1—C81.435 (5)C16—H160.9500
N2—C141.290 (5)C17—C181.395 (6)
N2—C131.429 (5)C18—C191.366 (6)
C1—C21.403 (5)C18—H180.9500
C1—C61.420 (6)C19—C201.402 (6)
C2—C31.361 (6)C19—H190.9500
C2—H20.9500O3—C211.217 (6)
C3—C41.406 (6)N3—C211.316 (6)
C3—H30.9500N3—C231.422 (7)
C4—C51.355 (6)N3—C221.466 (7)
C5—C61.419 (6)C21—H210.9500
C5—H50.9500C22—H22A0.9800
C6—C71.428 (5)C22—H22B0.9800
C7—H70.9500C22—H22C0.9800
C8—C91.389 (6)C23—H23A0.9800
C8—C131.397 (6)C23—H23B0.9800
C9—C101.384 (6)C23—H23C0.9800
C9—H90.9500
O1—Mn1—O290.84 (12)C11—C10—H10119.8
O1—Mn1—N192.38 (14)C9—C10—H10119.8
O2—Mn1—N1161.07 (14)C12—C11—C10121.0 (4)
O1—Mn1—N2168.61 (14)C12—C11—H11119.5
O2—Mn1—N290.93 (13)C10—C11—H11119.5
N1—Mn1—N282.42 (14)C11—C12—C13119.2 (4)
O1—Mn1—Cl198.63 (10)C11—C12—H12120.4
O2—Mn1—Cl199.10 (10)C13—C12—H12120.4
N1—Mn1—Cl198.84 (10)C12—C13—C8120.0 (4)
N2—Mn1—Cl192.20 (10)C12—C13—N2124.3 (4)
O1—Mn1—O2i87.52 (11)C8—C13—N2115.6 (4)
O2—Mn1—O2i81.01 (12)N2—C14—C15125.0 (4)
N1—Mn1—O2i80.51 (11)N2—C14—H14117.5
N2—Mn1—O2i81.65 (11)C15—C14—H14117.5
Cl1—Mn1—O2i173.85 (7)C16—C15—C20119.7 (4)
C1—O1—Mn1129.7 (3)C16—C15—C14118.1 (4)
C20—O2—Mn1122.9 (3)C20—C15—C14122.1 (4)
C7—N1—C8121.5 (3)C17—C16—C15120.0 (4)
C7—N1—Mn1124.8 (3)C17—C16—H16120.0
C8—N1—Mn1113.5 (3)C15—C16—H16120.0
C14—N2—C13122.9 (4)C16—C17—C18120.8 (4)
C14—N2—Mn1123.6 (3)C16—C17—Br2120.6 (3)
C13—N2—Mn1113.3 (3)C18—C17—Br2118.6 (3)
O1—C1—C2118.3 (4)C19—C18—C17119.7 (4)
O1—C1—C6123.4 (4)C19—C18—H18120.2
C2—C1—C6118.2 (4)C17—C18—H18120.2
C3—C2—C1121.9 (4)C18—C19—C20121.7 (4)
C3—C2—H2119.0C18—C19—H19119.1
C1—C2—H2119.0C20—C19—H19119.1
C2—C3—C4119.4 (4)O2—C20—C19118.6 (4)
C2—C3—H3120.3O2—C20—C15123.4 (4)
C4—C3—H3120.3C19—C20—C15117.9 (4)
C5—C4—C3121.1 (4)C21—N3—C23121.1 (5)
C5—C4—Br1120.4 (3)C21—N3—C22121.0 (5)
C3—C4—Br1118.4 (3)C23—N3—C22117.9 (5)
C4—C5—C6120.3 (4)O3—C21—N3126.1 (6)
C4—C5—H5119.9O3—C21—H21116.9
C6—C5—H5119.9N3—C21—H21116.9
C5—C6—C1119.1 (4)N3—C22—H22A109.5
C5—C6—C7117.9 (4)N3—C22—H22B109.5
C1—C6—C7122.9 (4)H22A—C22—H22B109.5
N1—C7—C6126.0 (4)N3—C22—H22C109.5
N1—C7—H7117.0H22A—C22—H22C109.5
C6—C7—H7117.0H22B—C22—H22C109.5
C9—C8—C13119.9 (4)N3—C23—H23A109.5
C9—C8—N1125.0 (4)N3—C23—H23B109.5
C13—C8—N1115.1 (4)H23A—C23—H23B109.5
C10—C9—C8119.4 (4)N3—C23—H23C109.5
C10—C9—H9120.3H23A—C23—H23C109.5
C8—C9—H9120.3H23B—C23—H23C109.5
C11—C10—C9120.4 (4)
O2—Mn1—O1—C1170.3 (4)C8—N1—C7—C6−175.0 (4)
N1—Mn1—O1—C18.9 (4)Mn1—N1—C7—C6−0.6 (6)
N2—Mn1—O1—C171.4 (8)C5—C6—C7—N1−177.7 (4)
Cl1—Mn1—O1—C1−90.4 (3)C1—C6—C7—N16.2 (7)
O2i—Mn1—O1—C189.3 (4)C7—N1—C8—C9−6.7 (6)
O1—Mn1—O2—C20153.2 (3)Mn1—N1—C8—C9178.3 (3)
N1—Mn1—O2—C20−107.0 (5)C7—N1—C8—C13173.8 (4)
N2—Mn1—O2—C20−38.1 (3)Mn1—N1—C8—C13−1.1 (4)
Cl1—Mn1—O2—C2054.3 (3)C13—C8—C9—C10−1.3 (6)
O2i—Mn1—O2—C20−119.5 (3)N1—C8—C9—C10179.3 (4)
O1—Mn1—N1—C7−5.4 (4)C8—C9—C10—C11−0.1 (7)
O2—Mn1—N1—C7−105.0 (5)C9—C10—C11—C120.4 (7)
N2—Mn1—N1—C7−175.2 (4)C10—C11—C12—C130.7 (7)
Cl1—Mn1—N1—C793.7 (3)C11—C12—C13—C8−2.1 (6)
O2i—Mn1—N1—C7−92.5 (4)C11—C12—C13—N2176.9 (4)
O1—Mn1—N1—C8169.4 (3)C9—C8—C13—C122.4 (6)
O2—Mn1—N1—C869.8 (5)N1—C8—C13—C12−178.1 (4)
N2—Mn1—N1—C8−0.5 (3)C9—C8—C13—N2−176.7 (4)
Cl1—Mn1—N1—C8−91.5 (3)N1—C8—C13—N22.8 (5)
O2i—Mn1—N1—C882.3 (3)C14—N2—C13—C12−6.5 (7)
O1—Mn1—N2—C14122.9 (7)Mn1—N2—C13—C12177.8 (3)
O2—Mn1—N2—C1424.0 (4)C14—N2—C13—C8172.6 (4)
N1—Mn1—N2—C14−173.8 (4)Mn1—N2—C13—C8−3.2 (5)
Cl1—Mn1—N2—C14−75.2 (4)C13—N2—C14—C15−179.8 (4)
O2i—Mn1—N2—C14104.8 (4)Mn1—N2—C14—C15−4.4 (6)
O1—Mn1—N2—C13−61.4 (8)N2—C14—C15—C16172.8 (4)
O2—Mn1—N2—C13−160.3 (3)N2—C14—C15—C20−11.8 (7)
N1—Mn1—N2—C131.9 (3)C20—C15—C16—C172.4 (7)
Cl1—Mn1—N2—C13100.6 (3)C14—C15—C16—C17177.8 (4)
O2i—Mn1—N2—C13−79.5 (3)C15—C16—C17—C181.6 (7)
Mn1—O1—C1—C2176.1 (3)C15—C16—C17—Br2−178.4 (3)
Mn1—O1—C1—C6−6.3 (6)C16—C17—C18—C19−3.0 (7)
O1—C1—C2—C3179.1 (4)Br2—C17—C18—C19177.0 (4)
C6—C1—C2—C31.4 (7)C17—C18—C19—C200.4 (7)
C1—C2—C3—C40.3 (7)Mn1—O2—C20—C19−149.3 (3)
C2—C3—C4—C5−2.2 (7)Mn1—O2—C20—C1534.1 (5)
C2—C3—C4—Br1−179.1 (3)C18—C19—C20—O2−173.3 (4)
C3—C4—C5—C62.3 (7)C18—C19—C20—C153.5 (7)
Br1—C4—C5—C6179.2 (3)C16—C15—C20—O2171.8 (4)
C4—C5—C6—C1−0.6 (6)C14—C15—C20—O2−3.5 (7)
C4—C5—C6—C7−176.8 (4)C16—C15—C20—C19−4.8 (6)
O1—C1—C6—C5−178.8 (4)C14—C15—C20—C19179.9 (4)
C2—C1—C6—C5−1.2 (6)C23—N3—C21—O30.3 (9)
O1—C1—C6—C7−2.8 (7)C22—N3—C21—O3−177.5 (5)
C2—C1—C6—C7174.8 (4)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···Cl1ii0.952.713.603 (4)156
C12—H12···O3iii0.952.543.468 (6)165
C14—H14···O3iii0.952.253.173 (5)165
C19—H19···Br2iv0.952.883.678 (4)143

Symmetry codes: (ii) −x, −y, −z+1; (iii) x, y, z+1; (iv) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2722).

References

  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dang, L.-L., Huo, Y.-Q., Wang, W. & Li, J. (2005). Acta Cryst. E61, m332–m334.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hwang, I.-C. & Ha, K. (2007). Acta Cryst. E63, m2365.
  • Mitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997–2003.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shyu, H.-L., Wei, H.-H. & Wang, Y. (1999). Inorg. Chim. Acta, 290, 8–13.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography