PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o275.
Published online 2010 January 9. doi:  10.1107/S1600536809054737
PMCID: PMC2979765

1-Acetyl-t-3-ethyl-r-2,c-6-bis­(4-methoxy­phen­yl)piperidin-4-one

Abstract

In the title compound, C23H27NO4, the piperidine ring adopts a distorted boat conformation. The meth­oxy groups lie in the plane of benzene rings to which they are attached [maximum deviations of 0.014 (3) and 0.007 (3) Å]. The benzene rings are oriented at angles of 67.2 (1) and 87.0 (1)° with respect to the best plane through the four co-planar atoms of the piperidine ring.

Related literature

For general background to piperidine derivatives, see: Aridoss et al. (2008 [triangle]). For asymmetry parameters, see: Nardelli (1983 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o275-scheme1.jpg

Experimental

Crystal data

  • C23H27NO4
  • M r = 381.46
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o275-efi1.jpg
  • a = 8.6736 (11) Å
  • b = 13.4578 (16) Å
  • c = 17.547 (2) Å
  • V = 2048.2 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.25 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.979, T max = 0.983
  • 11102 measured reflections
  • 2646 independent reflections
  • 1926 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.138
  • S = 1.08
  • 2646 reflections
  • 257 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809054737/bt5144sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054737/bt5144Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KR thanks the GNR X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the management of Kandaswami Kandar’s College, Velur, Namakkal, TN, India, for the encouragement to pursue the programme.

supplementary crystallographic information

Comment

Piperidine derivatives are the valued heterocyclic compounds in the field of medicinal chemistry. The compounds possessing an amide bond linkage have a wide range of biological activities such as antimicrobial, antinflammatory, antiviral, antimalarial and general anaesthetics. Furtheremore, the amides derived from chloroacetylchloride also gain significant importance in medicinal field as evidenced by their varied pharmacological activities (Aridoss et al., 2008). The crystallographic study of the title compound has been carried out to establish the molecular structur

The ORTEP diagram of the title compound is shown in Fig. 1. The piperidine ring in the molecule adopts a distorted boat conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2 = 0.636 (3) Å, q3 = 0.089 (3) Å, [var phi]2 = 286.2 (2)° and Δs(C3 & C6)= 15.4 (3)°. The methoxy groups lie in the plane of phenyl rings and the phenyl rings are oriented at angles of 67.2 (1)° and 87.0(1°) with the best plane of piperidine ring. The sum of the bond angles around the atom N1(358.5°) of the piperidine ring in the molecule is in accordance with sp2 hybridization. The crystal structure is stabilized by intramolecular C—H···O interactions.

Experimental

To a solution of t-3-ethyl-r-2,c-6-bis(4-methoxyphenyl)piperidin-4-one (3.39 g) in anhydrous benzene (60 ml) was added triethylamine (2.78) and acetylchloride (1.42 ml). The contents were allowed to reflux on a water bath for 12 h. The precipitated ammonium salt was filtered off and the filterate was washed with water. The organic layer was dried over anhydrous Na2SO4, concentrated and crystallized from benzene:pet-ether (60–80°C) in the ratio of 9:1.

Refinement

In the absense of anomalous scatterers Friedel pairs were merged. The C bound H atoms positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Figures

Fig. 1.
Perspective view of the molecule showing the thermal ellipsoids are drawn at 30% probability level. H atoms have been omitted for clarity.
Fig. 2.
The crystal packing of the molecules viewed down a–axis.

Crystal data

C23H27NO4F(000) = 816
Mr = 381.46Dx = 1.237 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1987 reflections
a = 8.6736 (11) Åθ = 1.9–28.5°
b = 13.4578 (16) ŵ = 0.08 mm1
c = 17.547 (2) ÅT = 293 K
V = 2048.2 (4) Å3Block, colorless
Z = 40.25 × 0.23 × 0.20 mm

Data collection

Bruker SMART APEXII area-detector diffractometer2646 independent reflections
Radiation source: fine-focus sealed tube1926 reflections with I > 2σ(I)
graphiteRint = 0.036
ω and [var phi] scansθmax = 28.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −11→8
Tmin = 0.979, Tmax = 0.983k = −17→13
11102 measured reflectionsl = −16→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.077P)2 + 0.0634P] where P = (Fo2 + 2Fc2)/3
2646 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.42 e Å3
1 restraintΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2257 (3)0.72781 (16)0.10022 (18)0.0773 (7)
O2−0.1555 (3)0.37114 (19)0.38952 (16)0.0789 (7)
O30.6511 (3)0.3748 (2)0.11657 (17)0.0849 (8)
O40.6382 (3)0.68839 (18)0.45689 (13)0.0698 (6)
N10.2969 (3)0.57593 (15)0.14275 (14)0.0496 (5)
C20.2612 (3)0.4685 (2)0.15230 (17)0.0519 (6)
H20.22120.44370.10370.062*
C30.4078 (4)0.4093 (2)0.1716 (2)0.0607 (8)
H3A0.42840.41690.22560.073*
H3B0.38700.33950.16240.073*
C40.5522 (4)0.4374 (2)0.12812 (19)0.0633 (8)
C50.5648 (3)0.5426 (2)0.10367 (18)0.0591 (7)
H50.67160.56430.11130.071*
C60.4594 (3)0.6100 (2)0.15094 (17)0.0517 (6)
H60.46380.67540.12650.062*
C70.1935 (3)0.6403 (2)0.11167 (19)0.0578 (7)
C80.0345 (4)0.6026 (3)0.0908 (3)0.0780 (10)
H8A−0.02100.65380.06440.117*
H8B−0.02020.58470.13640.117*
H8C0.04400.54540.05850.117*
C90.1414 (3)0.4477 (2)0.21308 (17)0.0506 (6)
C100.1417 (3)0.4952 (2)0.28316 (19)0.0597 (7)
H100.21130.54650.29190.072*
C110.0419 (4)0.4682 (3)0.3394 (2)0.0655 (8)
H110.04510.50120.38590.079*
C12−0.0635 (4)0.3930 (2)0.32890 (18)0.0550 (7)
C13−0.0700 (4)0.3475 (3)0.2595 (2)0.0731 (10)
H13−0.14350.29870.25030.088*
C140.0336 (5)0.3744 (3)0.2025 (2)0.0738 (10)
H140.02960.34170.15580.089*
C15−0.2642 (7)0.2920 (4)0.3811 (4)0.120 (2)
H15A−0.33930.30980.34330.181*
H15B−0.31490.28040.42890.181*
H15C−0.21130.23280.36550.181*
C160.5258 (5)0.5529 (3)0.0179 (2)0.0792 (10)
H16A0.43260.51540.00760.095*
H16B0.50410.62210.00710.095*
C170.6463 (6)0.5190 (5)−0.0336 (3)0.1079 (16)
H17A0.73290.5632−0.03060.162*
H17B0.60750.5182−0.08480.162*
H17C0.67800.4532−0.01940.162*
C180.5072 (3)0.62705 (19)0.23351 (17)0.0509 (6)
C190.6239 (3)0.5761 (2)0.27049 (19)0.0586 (7)
H190.67700.52650.24450.070*
C200.6632 (3)0.5970 (2)0.34454 (19)0.0580 (7)
H200.74080.56080.36830.070*
C210.5885 (3)0.6715 (2)0.38383 (18)0.0541 (7)
C220.4715 (4)0.7235 (2)0.3481 (2)0.0611 (8)
H220.41990.77380.37390.073*
C230.4317 (3)0.7002 (2)0.2739 (2)0.0583 (7)
H230.35180.73490.25060.070*
C240.5793 (5)0.7729 (3)0.4950 (2)0.0799 (10)
H24A0.59580.83090.46410.120*
H24B0.63140.78090.54290.120*
H24C0.47090.76440.50370.120*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0703 (13)0.0523 (12)0.1093 (19)0.0031 (10)−0.0158 (14)0.0160 (12)
O20.0801 (16)0.0746 (16)0.0820 (16)−0.0055 (12)0.0234 (13)−0.0043 (13)
O30.0738 (15)0.0847 (17)0.0962 (19)0.0267 (13)0.0087 (14)−0.0157 (15)
O40.0709 (14)0.0749 (15)0.0637 (13)−0.0019 (11)−0.0078 (12)−0.0087 (11)
N10.0480 (12)0.0419 (11)0.0591 (13)−0.0018 (9)−0.0053 (10)−0.0002 (10)
C20.0573 (15)0.0446 (14)0.0538 (14)−0.0033 (12)−0.0011 (13)−0.0076 (12)
C30.0660 (18)0.0446 (15)0.0714 (19)0.0091 (13)0.0066 (15)−0.0021 (14)
C40.0606 (17)0.0687 (19)0.0606 (17)0.0108 (15)0.0008 (14)−0.0132 (15)
C50.0490 (15)0.0695 (18)0.0588 (16)−0.0026 (13)0.0018 (13)−0.0014 (15)
C60.0467 (14)0.0494 (14)0.0590 (15)−0.0025 (11)−0.0046 (12)0.0019 (13)
C70.0560 (16)0.0556 (16)0.0620 (17)0.0023 (13)−0.0056 (14)0.0024 (14)
C80.0608 (19)0.071 (2)0.102 (3)−0.0010 (16)−0.0243 (19)0.008 (2)
C90.0516 (14)0.0403 (13)0.0599 (16)−0.0020 (11)−0.0060 (12)−0.0043 (12)
C100.0532 (15)0.0583 (17)0.0677 (18)−0.0134 (13)0.0010 (14)−0.0164 (15)
C110.0628 (18)0.070 (2)0.0634 (18)−0.0034 (15)−0.0004 (15)−0.0217 (16)
C120.0527 (15)0.0481 (15)0.0642 (18)0.0015 (12)0.0054 (13)−0.0045 (13)
C130.080 (2)0.0620 (19)0.077 (2)−0.0282 (17)0.0116 (18)−0.0147 (17)
C140.088 (2)0.070 (2)0.0634 (18)−0.0273 (18)0.0077 (18)−0.0215 (17)
C150.120 (4)0.100 (3)0.141 (4)−0.048 (3)0.058 (4)−0.017 (3)
C160.076 (2)0.101 (3)0.0604 (18)−0.010 (2)0.0017 (17)0.004 (2)
C170.103 (3)0.139 (5)0.082 (3)−0.006 (3)0.011 (3)−0.012 (3)
C180.0487 (13)0.0449 (14)0.0591 (15)−0.0048 (12)−0.0038 (12)−0.0002 (12)
C190.0541 (15)0.0527 (16)0.0690 (19)0.0091 (13)−0.0027 (14)−0.0082 (14)
C200.0498 (15)0.0583 (17)0.0658 (18)0.0051 (12)−0.0100 (14)0.0008 (14)
C210.0489 (13)0.0492 (16)0.0642 (17)−0.0092 (12)−0.0038 (13)−0.0049 (13)
C220.0526 (15)0.0519 (16)0.079 (2)0.0045 (12)−0.0048 (15)−0.0137 (15)
C230.0527 (14)0.0508 (15)0.0715 (19)0.0069 (12)−0.0114 (14)−0.0053 (14)
C240.091 (2)0.076 (2)0.073 (2)−0.0085 (19)−0.006 (2)−0.0173 (19)

Geometric parameters (Å, °)

O1—C71.227 (4)C11—C121.376 (5)
O2—C121.362 (4)C11—H110.9300
O2—C151.430 (5)C12—C131.364 (5)
O3—C41.219 (4)C13—C141.393 (5)
O4—C211.372 (4)C13—H130.9300
O4—C241.415 (5)C14—H140.9300
N1—C71.361 (4)C15—H15A0.9600
N1—C21.488 (4)C15—H15B0.9600
N1—C61.489 (3)C15—H15C0.9600
C2—C91.515 (4)C16—C171.456 (6)
C2—C31.538 (4)C16—H16A0.9700
C2—H20.9800C16—H16B0.9700
C3—C41.514 (5)C17—H17A0.9600
C3—H3A0.9700C17—H17B0.9600
C3—H3B0.9700C17—H17C0.9600
C4—C51.484 (5)C18—C231.379 (4)
C5—C61.532 (4)C18—C191.384 (4)
C5—C161.548 (5)C19—C201.373 (5)
C5—H50.9800C19—H190.9300
C6—C181.525 (4)C20—C211.378 (4)
C6—H60.9800C20—H200.9300
C7—C81.514 (4)C21—C221.382 (4)
C8—H8A0.9600C22—C231.383 (5)
C8—H8B0.9600C22—H220.9300
C8—H8C0.9600C23—H230.9300
C9—C141.371 (4)C24—H24A0.9600
C9—C101.386 (4)C24—H24B0.9600
C10—C111.362 (5)C24—H24C0.9600
C10—H100.9300
C12—O2—C15117.8 (3)C13—C12—C11118.5 (3)
C21—O4—C24117.5 (3)O2—C12—C11116.3 (3)
C7—N1—C2121.7 (2)C12—C13—C14119.9 (3)
C7—N1—C6117.8 (2)C12—C13—H13120.1
C2—N1—C6119.0 (2)C14—C13—H13120.1
N1—C2—C9113.7 (2)C9—C14—C13121.9 (3)
N1—C2—C3110.9 (2)C9—C14—H14119.0
C9—C2—C3108.5 (2)C13—C14—H14119.0
N1—C2—H2107.9O2—C15—H15A109.5
C9—C2—H2107.9O2—C15—H15B109.5
C3—C2—H2107.9H15A—C15—H15B109.5
C4—C3—C2116.3 (3)O2—C15—H15C109.5
C4—C3—H3A108.2H15A—C15—H15C109.5
C2—C3—H3A108.2H15B—C15—H15C109.5
C4—C3—H3B108.2C17—C16—C5114.8 (4)
C2—C3—H3B108.2C17—C16—H16A108.6
H3A—C3—H3B107.4C5—C16—H16A108.6
O3—C4—C5124.0 (3)C17—C16—H16B108.6
O3—C4—C3119.6 (3)C5—C16—H16B108.6
C5—C4—C3116.4 (3)H16A—C16—H16B107.5
C4—C5—C6111.4 (3)C16—C17—H17A109.5
C4—C5—C16110.5 (3)C16—C17—H17B109.5
C6—C5—C16110.1 (3)H17A—C17—H17B109.5
C4—C5—H5108.3C16—C17—H17C109.5
C6—C5—H5108.3H17A—C17—H17C109.5
C16—C5—H5108.3H17B—C17—H17C109.5
N1—C6—C18113.3 (2)C23—C18—C19117.4 (3)
N1—C6—C5109.3 (2)C23—C18—C6117.8 (3)
C18—C6—C5116.2 (2)C19—C18—C6124.7 (3)
N1—C6—H6105.7C20—C19—C18121.6 (3)
C18—C6—H6105.7C20—C19—H19119.2
C5—C6—H6105.7C18—C19—H19119.2
O1—C7—N1121.8 (3)C19—C20—C21120.4 (3)
O1—C7—C8119.3 (3)C19—C20—H20119.8
N1—C7—C8118.9 (3)C21—C20—H20119.8
C7—C8—H8A109.5O4—C21—C20116.1 (3)
C7—C8—H8B109.5O4—C21—C22124.8 (3)
H8A—C8—H8B109.5C20—C21—C22119.1 (3)
C7—C8—H8C109.5C21—C22—C23119.7 (3)
H8A—C8—H8C109.5C21—C22—H22120.2
H8B—C8—H8C109.5C23—C22—H22120.2
C14—C9—C10117.0 (3)C22—C23—C18121.8 (3)
C14—C9—C2120.3 (3)C22—C23—H23119.1
C10—C9—C2122.5 (2)C18—C23—H23119.1
C11—C10—C9121.2 (3)O4—C24—H24A109.5
C11—C10—H10119.4O4—C24—H24B109.5
C9—C10—H10119.4H24A—C24—H24B109.5
C10—C11—C12121.4 (3)O4—C24—H24C109.5
C10—C11—H11119.3H24A—C24—H24C109.5
C12—C11—H11119.3H24B—C24—H24C109.5
C13—C12—O2125.2 (3)
C7—N1—C2—C9−70.2 (3)C2—C9—C10—C11−173.5 (3)
C6—N1—C2—C9123.6 (3)C9—C10—C11—C12−0.3 (5)
C7—N1—C2—C3167.3 (3)C15—O2—C12—C132.3 (6)
C6—N1—C2—C31.1 (4)C15—O2—C12—C11−178.7 (4)
N1—C2—C3—C4−41.2 (4)C10—C11—C12—C13−2.1 (5)
C9—C2—C3—C4−166.7 (3)C10—C11—C12—O2178.8 (3)
C2—C3—C4—O3−151.4 (3)O2—C12—C13—C14−178.1 (3)
C2—C3—C4—C530.1 (4)C11—C12—C13—C143.0 (6)
O3—C4—C5—C6−157.9 (3)C10—C9—C14—C13−0.8 (6)
C3—C4—C5—C620.6 (4)C2—C9—C14—C13174.5 (3)
O3—C4—C5—C1679.5 (4)C12—C13—C14—C9−1.5 (7)
C3—C4—C5—C16−102.0 (3)C4—C5—C16—C17−75.5 (5)
C7—N1—C6—C18110.1 (3)C6—C5—C16—C17161.1 (4)
C2—N1—C6—C18−83.1 (3)N1—C6—C18—C23−63.3 (3)
C7—N1—C6—C5−118.6 (3)C5—C6—C18—C23168.9 (3)
C2—N1—C6—C548.2 (3)N1—C6—C18—C19118.4 (3)
C4—C5—C6—N1−58.7 (3)C5—C6—C18—C19−9.4 (4)
C16—C5—C6—N164.1 (3)C23—C18—C19—C200.2 (5)
C4—C5—C6—C1871.0 (3)C6—C18—C19—C20178.4 (3)
C16—C5—C6—C18−166.1 (3)C18—C19—C20—C21−1.2 (5)
C2—N1—C7—O1−176.2 (3)C24—O4—C21—C20171.3 (3)
C6—N1—C7—O1−9.9 (5)C24—O4—C21—C22−8.4 (4)
C2—N1—C7—C83.8 (5)C19—C20—C21—O4−178.5 (3)
C6—N1—C7—C8170.2 (3)C19—C20—C21—C221.2 (5)
N1—C2—C9—C14142.0 (3)O4—C21—C22—C23179.6 (3)
C3—C2—C9—C14−94.2 (4)C20—C21—C22—C23−0.1 (5)
N1—C2—C9—C10−43.0 (4)C21—C22—C23—C18−1.0 (5)
C3—C2—C9—C1080.8 (3)C19—C18—C23—C220.9 (5)
C14—C9—C10—C111.7 (5)C6—C18—C23—C22−177.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O10.982.232.723 (3)110

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5144).

References

  • Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M. Kabilan, S. & Jeong, Y. T. (2008). Eur. J. Med. Chem. pp. 1–16.
  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography