PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m213–m214.
Published online 2010 January 30. doi:  10.1107/S1600536810002953
PMCID: PMC2979764

Poly[[tris­(μ3-2-oxidopyridinium-3-carboxyl­ato)manganese(II)sodium(I)] monohydrate]

Abstract

In the crystal structure of the title compound, {[MnNa(C6H4NO3)3]·H2O}n, the MnII cation is located on a threefold rotation axis and is chelated by three 2-oxidopyridinium-3-carboxyl­ate (opc) anions in an octa­hedal coordination. The NaI cation is located on a threefold rotation axis and is surrounded by six O atoms from three opc anions. The opc anions link the Mn and Na cations, forming a three-dimensional polymeric structure. The uncoordinated water mol­ecule, located on a threefold rotation axis, is equally disordered over two sites. The three-dimensional network is consolidated by N—H(...)O hydrogen bonds.

Related literature

For related NiII and CoII complexes, see: Zhang et al. (2009a [triangle],b [triangle]). For comparison C—O bond distances in 2-oxidopyridinium-3-carboxyl­ate and 2-hydroxy­pyridine­carboxyl­ate complexes, see: Yao et al. (2004 [triangle]); Yan & Hu (2007a [triangle],b [triangle]); Wen & Liu (2007 [triangle]); Quintal et al. (2002 [triangle]). For comparison C—O bond distances in 2-hydroxy­benzoic acid and 2-hydroxy­benzoate complexes, see: Munshi & Guru Row (2006 [triangle]); Su & Xu (2005 [triangle]); Li et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m213-scheme1.jpg

Experimental

Crystal data

  • [MnNa(C6H4NO3)3]·H2O
  • M r = 510.25
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-66-0m213-efi1.jpg
  • a = 10.1478 (18) Å
  • c = 37.420 (13) Å
  • V = 3337.1 (15) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 0.67 mm−1
  • T = 294 K
  • 0.33 × 0.28 × 0.26 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.822, T max = 0.840
  • 6825 measured reflections
  • 1315 independent reflections
  • 1236 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.099
  • S = 1.16
  • 1315 reflections
  • 103 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.49 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 649 Friedel pairs
  • Flack parameter: −0.01 (3)

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002953/ng2724sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002953/ng2724Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

As a part of ongoing investigation on π-π stacking (Li et al., 2005), the title complex has been prepared in the laboratory and its crystal structure is reported here.

In the crystal structure the MnII cation is located in a three-fold ratation axis and is chelated by three 2-oxidopyridinium-3-carboxylate (opc) anions in a distorted anti-triprism geometry (Fig. 1). The NaI cation is located on the same three-fold rotation axis and is surrounded by six O atoms from three opc anions (Table 1). The opc anions link the Mn and Na cations to form the three dimensional polymeric structure.

The shorter C—O bond distance of 1.251 (4) Å is observed between the deprotonated hydroxy group and pyridinium ring. This is similar to those found in the related complexes of oxidopyridinium-carboxylate (Yao et al., 2004; Yan & Hu, 2007a,b; Wen & Liu, 2007; Zhang et al. 2009a,b), it is also consistent with that found in hydroxy-pyridinecarboxylate complex (Quintal et al. 2002). This finding suggests the electron delocalization between pyridine ring and hydroxy group. But this shorter C—O bond is much different from the C—O bond distance of ca. 1.35 Å between benzene ring and hydroxy-O atom found in hydroxy-benzencarboxylic acid (Munshi & Guru Row, 2006) and in hydroxy-benzenecarboxylate complexes of metals (Su & Xu, 2005; Li et al., 2005).

The lattice water molecule located on the three-fold rotation axis is disordered over two sites with o.5 occupancies for each component. The N—H···O hydrogen bondings are present in the polymeric structure. No π-π stacking is observed in the crystal structure.

Experimental

2-Hydroxy-pyridine-3-carboxylic acid (0.13 g, 1 mmol), NaOH (0.04 g, 1 mmol), imidazole (0.14 g, 2 mmol) and Mn(NO3)2 (0.18 g, 1 mmol) and water (8 ml) and ethanol (2 ml) were sealed in a 25 ml stainless steel reactor with a Teflon liner. The reaction system was heated at 433 K for 9 h. After the mixture was cooled to room temperature the single crystals of the title complex were obtained.

Refinement

The lattice water molecule is disordered over two sites with 0.5 occupancy for each component, the water H atom was placed in a chemical sensitive position and refined in a riding mode with Uiso(H) = 1.2Ueq(O1W). The H atom bonded to the pyridine N was located in a difference Fourier map and refined as riding in as-found relative position with Uiso(H) = 1.2Ueq(N). Other H atoms were placed in calculated positions with C—H = 0.93 and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The coordination environment around a Mn cation and a Na cation with 30% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry codes: (i) 1-y, x-y, z; (ii) 1-x+y, 1-x, z].

Crystal data

[MnNa(C6H4NO3)3]·H2ODx = 1.523 Mg m3
Mr = 510.25Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 1286 reflections
Hall symbol: R 3 -2"cθ = 2.6–25.0°
a = 10.1478 (18) ŵ = 0.67 mm1
c = 37.420 (13) ÅT = 294 K
V = 3337.1 (15) Å3Prism, brown
Z = 60.33 × 0.28 × 0.26 mm
F(000) = 1554

Data collection

Rigaku R-AXIS RAPID IP diffractometer1315 independent reflections
Radiation source: fine-focus sealed tube1236 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 10.00 pixels mm-1θmax = 25.2°, θmin = 2.6°
ω scanh = −11→11
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −11→11
Tmin = 0.822, Tmax = 0.840l = −44→44
6825 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.099w = 1/[σ2(Fo2) + (0.0683P)2 + 0.0175P] where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
1315 reflectionsΔρmax = 0.35 e Å3
103 parametersΔρmin = −0.49 e Å3
1 restraintAbsolute structure: Flack (1983), 649 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.01 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mn0.66670.33330.87519 (2)0.0258 (2)
Na10.66670.33330.96375 (5)0.0283 (5)
N10.7336 (3)0.0138 (3)0.93953 (7)0.0401 (6)
H1N0.76550.07500.95890.048*
O10.4925 (3)−0.1044 (3)0.82611 (6)0.0464 (6)
O20.5735 (3)0.1281 (3)0.84538 (6)0.0377 (6)
O30.6999 (3)0.1941 (3)0.91404 (6)0.0425 (6)
C10.5566 (3)−0.0028 (3)0.84910 (7)0.0292 (6)
C20.6173 (3)−0.0412 (3)0.88206 (8)0.0321 (6)
C30.6828 (3)0.0635 (3)0.91133 (8)0.0293 (6)
C40.7283 (6)−0.1207 (4)0.94099 (12)0.0596 (12)
H40.7664−0.14540.96090.072*
C50.6677 (6)−0.2210 (4)0.91359 (12)0.0689 (13)
H50.6651−0.31390.91410.083*
C60.6092 (6)−0.1799 (4)0.88440 (12)0.0581 (12)
H60.5631−0.24940.86590.070*
O1W0.66670.33330.6735 (14)0.26 (3)0.50
H1W0.58950.32880.66010.310*0.6667
O2W0.66670.33330.6459 (14)0.30 (3)0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn0.0289 (3)0.0289 (3)0.0195 (4)0.01446 (13)0.0000.000
Na10.0312 (7)0.0312 (7)0.0225 (11)0.0156 (4)0.0000.000
N10.0555 (16)0.0401 (14)0.0283 (13)0.0266 (13)−0.0171 (12)−0.0075 (10)
O10.0624 (15)0.0393 (12)0.0297 (12)0.0195 (12)−0.0221 (12)−0.0113 (10)
O20.0536 (14)0.0337 (13)0.0250 (11)0.0213 (9)−0.0148 (10)−0.0030 (10)
O30.0703 (17)0.0398 (13)0.0283 (12)0.0358 (13)−0.0199 (12)−0.0107 (11)
C10.0288 (14)0.0302 (16)0.0235 (13)0.0110 (12)−0.0031 (12)−0.0034 (12)
C20.0360 (14)0.0296 (14)0.0269 (15)0.0135 (13)−0.0089 (12)−0.0046 (12)
C30.0348 (15)0.0314 (15)0.0238 (13)0.0180 (13)−0.0069 (11)−0.0005 (11)
C40.094 (3)0.050 (2)0.044 (2)0.043 (2)−0.031 (2)−0.0023 (17)
C50.113 (4)0.042 (2)0.063 (2)0.047 (3)−0.041 (2)−0.011 (2)
C60.091 (3)0.0422 (19)0.048 (2)0.038 (2)−0.034 (2)−0.0189 (17)
O1W0.31 (4)0.31 (4)0.16 (4)0.15 (2)0.0000.000
O2W0.34 (5)0.34 (5)0.23 (6)0.17 (2)0.0000.000

Geometric parameters (Å, °)

Mn—O22.123 (3)N1—H1N0.9033
Mn—O2i2.123 (3)O1—C11.247 (4)
Mn—O2ii2.123 (3)O2—C11.260 (4)
Mn—O32.168 (2)O3—C31.251 (4)
Mn—O3i2.168 (2)C1—C21.514 (4)
Mn—O3ii2.168 (2)C2—C61.370 (4)
Mn—Na13.314 (2)C2—C31.437 (4)
Na1—O1iii2.331 (2)C4—C51.356 (6)
Na1—O1iv2.331 (3)C4—H40.9300
Na1—O1v2.331 (2)C5—C61.403 (6)
Na1—O32.459 (3)C5—H50.9300
Na1—O3i2.459 (3)C6—H60.9300
Na1—O3ii2.459 (3)O1W—H1W0.9106
N1—C41.339 (5)O2W—H1W0.9294
N1—C31.376 (4)
O2—Mn—O2i94.91 (9)O3—Na1—O3ii69.00 (10)
O2—Mn—O2ii94.91 (9)O3i—Na1—O3ii69.00 (10)
O2i—Mn—O2ii94.91 (9)O1iii—Na1—Mn117.77 (8)
O2—Mn—O381.45 (8)O1iv—Na1—Mn117.77 (8)
O2i—Mn—O3105.70 (10)O1v—Na1—Mn117.77 (8)
O2ii—Mn—O3159.28 (9)O3—Na1—Mn40.85 (6)
O2—Mn—O3i159.28 (9)O3i—Na1—Mn40.85 (6)
O2i—Mn—O3i81.45 (8)O3ii—Na1—Mn40.85 (6)
O2ii—Mn—O3i105.70 (10)C4—N1—C3125.0 (3)
O3—Mn—O3i79.96 (10)C4—N1—H1N119.0
O2—Mn—O3ii105.70 (11)C3—N1—H1N115.8
O2i—Mn—O3ii159.28 (9)C1—O1—Na1vi163.8 (2)
O2ii—Mn—O3ii81.45 (8)C1—O2—Mn137.3 (2)
O3—Mn—O3ii79.96 (10)C3—O3—Mn130.64 (19)
O3i—Mn—O3ii79.96 (10)C3—O3—Na1133.1 (2)
O2—Mn—Na1121.71 (7)Mn—O3—Na191.26 (9)
O2i—Mn—Na1121.71 (7)O1—C1—O2122.4 (3)
O2ii—Mn—Na1121.71 (7)O1—C1—C2117.4 (3)
O3—Mn—Na147.89 (6)O2—C1—C2120.3 (3)
O3i—Mn—Na147.89 (7)C6—C2—C3118.6 (3)
O3ii—Mn—Na147.89 (6)C6—C2—C1119.5 (3)
O1iii—Na1—O1iv100.04 (10)C3—C2—C1121.8 (2)
O1iii—Na1—O1v100.04 (10)O3—C3—N1116.6 (3)
O1iv—Na1—O1v100.04 (10)O3—C3—C2127.8 (3)
O1iii—Na1—O3149.83 (11)N1—C3—C2115.6 (2)
O1iv—Na1—O3109.27 (10)N1—C4—C5120.4 (4)
O1v—Na1—O382.12 (8)N1—C4—H4119.8
O1iii—Na1—O3i82.12 (8)C5—C4—H4119.8
O1iv—Na1—O3i149.83 (11)C4—C5—C6117.8 (3)
O1v—Na1—O3i109.27 (10)C4—C5—H5121.1
O3—Na1—O3i69.00 (10)C6—C5—H5121.1
O1iii—Na1—O3ii109.27 (10)C2—C6—C5122.5 (4)
O1iv—Na1—O3ii82.12 (8)C2—C6—H6118.7
O1v—Na1—O3ii149.83 (11)C5—C6—H6118.7

Symmetry codes: (i) −y+1, xy, z; (ii) −x+y+1, −x+1, z; (iii) −x+y+4/3, y+2/3, z+1/6; (iv) −y+1/3, −x+2/3, z+1/6; (v) x+1/3, xy−1/3, z+1/6; (vi) −x+y+2/3, y−2/3, z−1/6.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1v0.902.122.983 (4)161
N1—H1N···O2v0.902.373.113 (4)140

Symmetry codes: (v) x+1/3, xy−1/3, z+1/6.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2724).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21. [PubMed]
  • Munshi, P. & Guru Row, T. N. (2006). Acta Cryst. B62, 612–626. [PubMed]
  • Quintal, S. M. O., Nogueira, H. I. S., Felix, V. & Drew, M. G. B. (2002). Polyhedron, 21, 2783–2791.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Su, J.-R. & Xu, D.-J. (2005). Acta Cryst. C61, m256–m258. [PubMed]
  • Wen, D.-C. & Liu, S.-X. (2007). Chin. J. Struct. Chem.26, 1281–1284.
  • Yan, H.-Y. & Hu, T.-Q. (2007a). Acta Cryst. E63, m2325.
  • Yan, H.-Y. & Hu, T.-Q. (2007b). Acta Cryst. E63, m2326.
  • Yao, Y., Cai, Q., Kou, H., Li, H., Wang, D., Yu, R., Chen, Y. & Xing, X. (2004). Chem. Lett.33, 1270–1271.
  • Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009a). Acta Cryst. E65, m977. [PMC free article] [PubMed]
  • Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009b). Acta Cryst. E65, m987–m988. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography