PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o329.
Published online 2010 January 9. doi:  10.1107/S1600536810000486
PMCID: PMC2979763

(2,7-Dimethoxy­naphthalene-1,8-di­yl)bis­(4-fluoro­benzo­yl)dimethanone

Abstract

The title compound, C26H18F2O4, is a naphthalene derivative in which the two aroyl groups at the 1- and 8-positions (peri positions) are anti to each other. There is an appreciable difference in the dihedral angles between the naphthalene ring system and the two benzene rings [66.88 (7)° and 88.09 (6)°]. In the crystal, weak C—H(...)O inter­actions involving one of the carbonyl groups and an aromatic C—H group ortho to the F atom seem to stabilize the packing of the mol­ecules.

Related literature

Our study on the selective electrophilic aromatic aroylation of 2,7-dimethoxy­naphthalene, has shown peri-aroylnaphthalene compounds to be formed regioselectively with the aid of a suitable acidic mediator, see: (Okamoto & Yonezawa, 2009 [triangle]). For related structures, see: Nakaema et al. (2007 [triangle], 2008 [triangle]); Mitsui et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o329-scheme1.jpg

Experimental

Crystal data

  • C26H18F2O4
  • M r = 432.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o329-efi1.jpg
  • a = 9.87444 (18) Å
  • b = 17.0275 (3) Å
  • c = 14.9671 (3) Å
  • β = 126.871 (1)°
  • V = 2013.19 (7) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.91 mm−1
  • T = 296 K
  • 0.40 × 0.40 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: numerical (NUMABS; Higashi, 1999 [triangle]) T min = 0.713, T max = 0.915
  • 36825 measured reflections
  • 3682 independent reflections
  • 3338 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.095
  • S = 1.07
  • 3682 reflections
  • 314 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000486/ds2015sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000486/ds2015Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partially supported by the Iketani Science and Technology Foundation, Tokyo, Japan.

supplementary crystallographic information

Comment

In the course of our study on selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively with the aid of suitable acidic mediator (Okamoto & Yonezawa, 2009). The aroyl groups at 1,8-positions of the naphthalene rings in these compounds are oriented in opposite fashion and are found to be non-coplanar resulting in partial disruption in π-conjugation systems. Recently, we have reported the X-ray crystal structures of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007) and 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008). As a part of the course of our continuous study on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of title compound, peri-aroylnaphthalene bearing fluoro groups, is discussed in this report.

In the molecule (Fig. 1), the dihedral angle between benzene rings [C12–C17] and [C19–C24] is 32.34 (8)°, which is distinctively larger than that of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene [7.99 (8)°]. The dihedral angles between the naphthalene ring [C1–C10] plane and the planes of two benzene rings [C12–C17] and [C19–C24] are 66.88 (7)° and 88.12 (6)°, respectively. The difference between two dihedral angles is larger than that of the analogous compound, which has the corresponding angles of 71.98 (7)° and 71.55 (7)°.

The molecules are packed in the crystal lattice apparently stabilized by C—H···O interactions inovolving C16, C21 and O1 [2.54 Å, 158° and 2.68 Å, 161°](Fig. 2 and Table 1).

Experimental

To a 10 ml flask, 4-fluorobenzoic acid (4.4 mmol, 616.5 mg) and phosphorus pentoxide–methanesulfonic acid (P2O5–MsOH; 8.8 ml) were placed and stirred at 60°C. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (2.0 mmol, 376.4 mg) was added. After the reaction mixture was stirred at 60 °C for 1 h, it was poured into ice-cold water (10 ml) and the mixture was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake (98% yield). Crude product was purified by recrystallization from EtOH (77% isolated yield). Furthermore, the isolated product was crystallized from toluene–hexane to give single-crystal.

Spectroscopic Data:

1H NMR δ (300 MHz, CDCl3): 3.70 (6H, s), 7.02 (4H, dd, J = 8.6 Hz), 7.21 (2H, d, J = 8.7 Hz), 7.71 (4H, dd, J = 8.41 Hz), 7.96 (2H, d, J = 8.7 Hz). 13C NMR δ (300 MHz, CDCl3): 56.289, 111.12, 114.92, 115.21, 125.47, 129.76, 131.52, 131.64, 132.25, 135.19, 156.24, 163.81, 167.17, 195.38. IR (KBr): 1596 (C=O), 1270 (Ar–O–Me). m.p. = 196°C. Anal. Calcd for C26H18F2O4; C, 70.27; H, 4.20. Found C, 72.05; H, 4.20.

Refinement

All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure with displacement ellipsoids at 50% probability for non-H atoms.
Fig. 2.
Weak C–H···O interactions (dotted lines).

Crystal data

C26H18F2O4F(000) = 896
Mr = 432.42Dx = 1.427 Mg m3
Monoclinic, P21/cMelting point: 469 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 9.87444 (18) ÅCell parameters from 33844 reflections
b = 17.0275 (3) Åθ = 3.7–68.2°
c = 14.9671 (3) ŵ = 0.91 mm1
β = 126.871 (1)°T = 296 K
V = 2013.19 (7) Å3Platelet, yellow
Z = 40.40 × 0.40 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID diffractometer3682 independent reflections
Radiation source: fine-focus sealed tube3338 reflections with I > 2σ(I)
graphiteRint = 0.030
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.5°
ω scansh = −11→11
Absorption correction: numerical (NUMABS; Higashi, 1999)k = −20→20
Tmin = 0.713, Tmax = 0.915l = −18→18
36825 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095w = 1/[σ2(Fo2) + (0.0494P)2 + 0.3061P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3682 reflectionsΔρmax = 0.22 e Å3
314 parametersΔρmin = −0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F1−0.21053 (13)0.44424 (5)−0.09780 (9)0.0824 (3)
F20.35965 (13)0.21569 (6)0.65179 (7)0.0878 (3)
O1−0.24490 (12)0.16209 (5)0.15843 (7)0.0570 (2)
O20.09608 (12)0.18156 (5)0.15466 (8)0.0598 (2)
O3−0.55074 (11)0.11265 (6)−0.11168 (8)0.0634 (3)
O40.31918 (12)0.01602 (6)0.31605 (8)0.0684 (3)
C1−0.26555 (15)0.08412 (7)0.02104 (9)0.0444 (3)
C2−0.42192 (16)0.05978 (7)−0.07141 (10)0.0503 (3)
C3−0.44496 (18)−0.01516 (8)−0.11871 (11)0.0587 (3)
H1−0.5531−0.0296−0.18250.070*
C4−0.31155 (19)−0.06521 (7)−0.07028 (11)0.0580 (3)
H2−0.3237−0.1170−0.10170.070*
C5−0.15072 (17)−0.04486 (7)0.02702 (10)0.0501 (3)
C6−0.01766 (19)−0.10000 (7)0.08034 (12)0.0574 (3)
H3−0.0389−0.15200.04630.067*
C70.13559 (18)−0.08282 (8)0.17722 (11)0.0573 (3)
H40.2247−0.12250.21430.071*
C80.16525 (16)−0.00701 (7)0.22300 (10)0.0516 (3)
C90.04104 (15)0.05019 (7)0.17254 (9)0.0450 (3)
C10−0.12396 (15)0.03188 (7)0.07386 (9)0.0438 (3)
C11−0.25571 (14)0.16202 (7)0.07300 (9)0.0444 (3)
C12−0.25352 (14)0.23685 (7)0.02252 (9)0.0449 (3)
C13−0.20106 (18)0.30478 (8)0.08654 (11)0.0559 (3)
H5−0.17150.30060.15730.068*
C14−0.1873 (2)0.37483 (8)0.04636 (12)0.0631 (4)
H6−0.14740.42210.09020.077*
C15−0.22767 (18)0.37560 (8)−0.05889 (12)0.0592 (3)
C16−0.28166 (19)0.31051 (8)−0.12562 (11)0.0614 (3)
H7−0.30570.3146−0.20080.086*
C17−0.29344 (17)0.24052 (7)−0.08343 (10)0.0526 (3)
H8−0.33350.1938−0.13060.059*
C180.09933 (14)0.13262 (7)0.21535 (10)0.0461 (3)
C190.16719 (14)0.15291 (7)0.33199 (10)0.0459 (3)
C200.29027 (17)0.21100 (8)0.38710 (12)0.0576 (3)
H90.33230.23420.34710.074*
C210.35501 (18)0.23239 (9)0.49493 (12)0.0642 (4)
H100.44600.27210.53670.088*
C220.29323 (17)0.19592 (8)0.54466 (11)0.0598 (4)
C230.17105 (17)0.13886 (9)0.49316 (11)0.0597 (3)
H110.13020.11740.52880.071*
C240.10868 (16)0.11671 (8)0.38576 (10)0.0527 (3)
H120.02170.07580.34670.062*
C25−0.71784 (19)0.08920 (13)−0.20143 (14)0.0706 (4)
C260.4565 (2)−0.03775 (11)0.36866 (15)0.0697 (4)
H13−0.751 (3)0.0383 (12)−0.1820 (16)0.098 (6)*
H14−0.786 (3)0.1326 (12)−0.2121 (15)0.088 (6)*
H15−0.728 (2)0.0805 (11)−0.2710 (16)0.094 (6)*
H160.429 (2)−0.0860 (11)0.3956 (14)0.081 (5)*
H170.556 (3)−0.0075 (11)0.4306 (16)0.094 (6)*
H180.479 (2)−0.0552 (10)0.3166 (15)0.082 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.1025 (7)0.0541 (5)0.1006 (7)0.0052 (4)0.0663 (6)0.0177 (4)
F20.0833 (6)0.1105 (8)0.0550 (5)−0.0057 (5)0.0337 (5)−0.0239 (5)
O10.0680 (6)0.0644 (6)0.0454 (5)0.0048 (4)0.0377 (4)0.0000 (4)
O20.0666 (6)0.0548 (5)0.0592 (5)−0.0018 (4)0.0384 (5)0.0083 (4)
O30.0468 (5)0.0667 (6)0.0569 (5)−0.0010 (4)0.0206 (4)−0.0085 (4)
O40.0548 (5)0.0657 (6)0.0631 (6)0.0165 (4)0.0237 (5)0.0001 (5)
C10.0507 (6)0.0438 (6)0.0414 (6)−0.0025 (5)0.0291 (5)−0.0006 (5)
C20.0523 (7)0.0531 (7)0.0445 (6)−0.0034 (5)0.0285 (6)−0.0011 (5)
C30.0631 (8)0.0568 (7)0.0490 (7)−0.0149 (6)0.0297 (6)−0.0093 (6)
C40.0771 (9)0.0442 (7)0.0547 (7)−0.0094 (6)0.0406 (7)−0.0078 (5)
C50.0678 (8)0.0425 (6)0.0498 (6)−0.0030 (5)0.0405 (6)−0.0011 (5)
C60.0821 (9)0.0425 (6)0.0613 (8)0.0044 (6)0.0503 (8)0.0006 (6)
C70.0729 (9)0.0493 (7)0.0589 (8)0.0160 (6)0.0444 (7)0.0089 (6)
C80.0579 (7)0.0525 (7)0.0489 (6)0.0078 (6)0.0345 (6)0.0051 (5)
C90.0527 (7)0.0435 (6)0.0443 (6)0.0026 (5)0.0321 (5)0.0020 (5)
C100.0548 (7)0.0418 (6)0.0416 (6)−0.0004 (5)0.0325 (5)0.0016 (5)
C110.0403 (6)0.0519 (7)0.0381 (6)0.0034 (5)0.0218 (5)−0.0015 (5)
C120.0437 (6)0.0462 (6)0.0427 (6)0.0053 (5)0.0248 (5)−0.0016 (5)
C130.0647 (8)0.0530 (7)0.0477 (7)0.0040 (6)0.0325 (6)−0.0046 (5)
C140.0718 (9)0.0458 (7)0.0674 (8)0.0003 (6)0.0395 (7)−0.0074 (6)
C150.0637 (8)0.0480 (7)0.0692 (8)0.0074 (6)0.0417 (7)0.0103 (6)
C160.0732 (9)0.0610 (8)0.0541 (7)0.0048 (7)0.0405 (7)0.0063 (6)
C170.0621 (8)0.0508 (7)0.0463 (6)0.0010 (6)0.0332 (6)−0.0035 (5)
C180.0426 (6)0.0462 (6)0.0491 (6)0.0034 (5)0.0272 (5)0.0038 (5)
C190.0427 (6)0.0425 (6)0.0486 (6)0.0023 (5)0.0253 (5)0.0003 (5)
C200.0559 (7)0.0527 (7)0.0665 (8)−0.0071 (6)0.0380 (7)−0.0078 (6)
C210.0566 (8)0.0597 (8)0.0686 (9)−0.0104 (6)0.0334 (7)−0.0187 (7)
C220.0516 (7)0.0667 (8)0.0469 (7)0.0060 (6)0.0220 (6)−0.0099 (6)
C230.0537 (7)0.0735 (9)0.0485 (7)0.0017 (6)0.0288 (6)0.0034 (6)
C240.0478 (6)0.0552 (7)0.0477 (6)−0.0050 (5)0.0246 (5)0.0001 (5)
C250.0494 (8)0.0904 (12)0.0578 (9)−0.0087 (8)0.0247 (7)−0.0112 (8)
C260.0586 (9)0.0752 (10)0.0733 (10)0.0202 (8)0.0385 (8)0.0156 (8)

Geometric parameters (Å, °)

F1—C151.3610 (15)C12—C131.3888 (17)
F2—C221.3611 (15)C13—C141.379 (2)
O1—C111.2176 (14)C13—H50.9168
O2—C181.2188 (14)C14—C151.374 (2)
O3—C21.3681 (16)C14—H60.9600
O3—C251.4236 (17)C15—C161.368 (2)
O4—C81.3651 (16)C16—C171.3859 (19)
O4—C261.4197 (17)C16—H71.0036
C1—C21.3808 (17)C17—H80.9758
C1—C101.4299 (16)C18—C191.4874 (16)
C1—C111.5110 (16)C19—C241.3854 (17)
C2—C31.4100 (18)C19—C201.3902 (17)
C3—C41.357 (2)C20—C211.381 (2)
C3—H10.9430C20—H90.9912
C4—C51.4099 (19)C21—C221.363 (2)
C4—H20.9717C21—H100.9902
C5—C61.4094 (18)C22—C231.370 (2)
C5—C101.4305 (16)C23—C241.3847 (18)
C6—C71.358 (2)C23—H110.9157
C6—H30.9791C24—H120.9809
C7—C81.4074 (18)C25—H131.03 (2)
C7—H40.9755C25—H140.95 (2)
C8—C91.3826 (17)C25—H151.00 (2)
C9—C101.4302 (17)C26—H161.018 (19)
C9—C181.5065 (16)C26—H171.00 (2)
C11—C121.4881 (16)C26—H180.975 (19)
C12—C171.3869 (16)
C2—O3—C25118.43 (12)C13—C14—H6122.3
C8—O4—C26119.26 (12)F1—C15—C16118.51 (13)
C2—C1—C10120.12 (11)F1—C15—C14118.29 (13)
C2—C1—C11117.85 (11)C16—C15—C14123.19 (12)
C10—C1—C11121.47 (10)C15—C16—C17117.81 (12)
O3—C2—C1115.41 (11)C15—C16—H7119.3
O3—C2—C3123.16 (11)C17—C16—H7122.8
C1—C2—C3121.42 (12)C16—C17—C12121.05 (12)
C4—C3—C2119.20 (12)C16—C17—H8118.7
C4—C3—H1121.6C12—C17—H8120.3
C2—C3—H1119.2O2—C18—C19120.52 (11)
C3—C4—C5121.88 (12)O2—C18—C9119.18 (11)
C3—C4—H2120.8C19—C18—C9120.24 (10)
C5—C4—H2117.3C24—C19—C20119.52 (11)
C6—C5—C4120.71 (11)C24—C19—C18121.83 (11)
C6—C5—C10119.72 (12)C20—C19—C18118.64 (11)
C4—C5—C10119.55 (12)C21—C20—C19120.52 (13)
C7—C6—C5121.59 (12)C21—C20—H9122.1
C7—C6—H3120.2C19—C20—H9117.3
C5—C6—H3118.2C22—C21—C20118.23 (13)
C6—C7—C8119.37 (12)C22—C21—H10120.0
C6—C7—H4120.4C20—C21—H10121.7
C8—C7—H4120.3F2—C22—C21118.26 (13)
O4—C8—C9115.77 (11)F2—C22—C23118.51 (14)
O4—C8—C7122.63 (11)C21—C22—C23123.20 (12)
C9—C8—C7121.52 (12)C22—C23—C24118.31 (13)
C8—C9—C10119.88 (11)C22—C23—H11120.2
C8—C9—C18115.89 (11)C24—C23—H11121.5
C10—C9—C18123.37 (10)C23—C24—C19120.21 (12)
C1—C10—C9124.44 (10)C23—C24—H12120.4
C1—C10—C5117.74 (11)C19—C24—H12119.4
C9—C10—C5117.78 (11)O3—C25—H13110.7 (11)
O1—C11—C12120.91 (10)O3—C25—H14104.1 (11)
O1—C11—C1118.64 (11)H13—C25—H14113.3 (16)
C12—C11—C1120.42 (9)O3—C25—H15111.1 (11)
C17—C12—C13118.93 (11)H13—C25—H15108.7 (15)
C17—C12—C11122.58 (10)H14—C25—H15109.0 (15)
C13—C12—C11118.41 (10)O4—C26—H16110.5 (10)
C14—C13—C12120.87 (12)O4—C26—H17105.2 (11)
C14—C13—H5121.7H16—C26—H17113.2 (15)
C12—C13—H5117.4O4—C26—H18110.6 (10)
C15—C14—C13118.15 (12)H16—C26—H18108.1 (14)
C15—C14—H6119.6H17—C26—H18109.3 (16)
C25—O3—C2—C1−175.20 (12)C10—C1—C11—O1−68.78 (15)
C25—O3—C2—C33.86 (19)C2—C1—C11—C12−79.42 (14)
C10—C1—C2—O3176.46 (10)C10—C1—C11—C12109.20 (12)
C11—C1—C2—O34.95 (16)O1—C11—C12—C17−168.99 (12)
C10—C1—C2—C3−2.62 (18)C1—C11—C12—C1713.08 (17)
C11—C1—C2—C3−174.13 (11)O1—C11—C12—C1314.35 (17)
O3—C2—C3—C4−177.06 (12)C1—C11—C12—C13−163.58 (11)
C1—C2—C3—C42.0 (2)C17—C12—C13—C14−0.5 (2)
C2—C3—C4—C50.9 (2)C11—C12—C13—C14176.26 (12)
C3—C4—C5—C6175.24 (12)C12—C13—C14—C150.3 (2)
C3—C4—C5—C10−2.9 (2)C13—C14—C15—F1−178.54 (13)
C4—C5—C6—C7−176.63 (13)C13—C14—C15—C160.4 (2)
C10—C5—C6—C71.52 (19)F1—C15—C16—C17178.04 (13)
C5—C6—C7—C8−3.0 (2)C14—C15—C16—C17−0.9 (2)
C26—O4—C8—C9−176.00 (12)C15—C16—C17—C120.7 (2)
C26—O4—C8—C70.9 (2)C13—C12—C17—C160.01 (19)
C6—C7—C8—O4−175.71 (12)C11—C12—C17—C16−176.63 (12)
C6—C7—C8—C91.0 (2)C8—C9—C18—O2111.97 (13)
O4—C8—C9—C10179.36 (10)C10—C9—C18—O2−57.38 (16)
C7—C8—C9—C102.44 (18)C8—C9—C18—C19−65.30 (14)
O4—C8—C9—C189.61 (16)C10—C9—C18—C19125.35 (12)
C7—C8—C9—C18−167.31 (11)O2—C18—C19—C24150.27 (12)
C2—C1—C10—C9−177.21 (11)C9—C18—C19—C24−32.49 (17)
C11—C1—C10—C9−6.01 (17)O2—C18—C19—C20−28.41 (17)
C2—C1—C10—C50.53 (16)C9—C18—C19—C20148.83 (12)
C11—C1—C10—C5171.73 (10)C24—C19—C20—C210.4 (2)
C8—C9—C10—C1173.95 (11)C18—C19—C20—C21179.11 (12)
C18—C9—C10—C1−17.11 (17)C19—C20—C21—C22−0.9 (2)
C8—C9—C10—C5−3.79 (16)C20—C21—C22—F2178.54 (12)
C18—C9—C10—C5165.16 (11)C20—C21—C22—C230.4 (2)
C6—C5—C10—C1−176.01 (10)F2—C22—C23—C24−177.46 (12)
C4—C5—C10—C12.16 (16)C21—C22—C23—C240.7 (2)
C6—C5—C10—C91.88 (16)C22—C23—C24—C19−1.2 (2)
C4—C5—C10—C9−179.95 (11)C20—C19—C24—C230.70 (19)
C2—C1—C11—O1102.61 (13)C18—C19—C24—C23−177.97 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H7···O1i1.002.543.493 (2)158
C21—H10···O1ii0.992.683.636 (2)161

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2015).

References

  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  • Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  • Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543. [PMC free article] [PubMed]
  • Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.
  • Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. [PMC free article] [PubMed]
  • Okamoto, A. & Yonezawa, N. (2009). Chem. Lett.38, 914–915.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography