PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m136.
Published online 2010 January 9. doi:  10.1107/S1600536810000632
PMCID: PMC2979759

{2-[(2-Acetyl­hydrazin-1-yl­idene)methyl-κ2 N 1,O]-6-methoxy­phenolato-κO 1}(nitrato-κO)copper(II) monohydrate

Abstract

In the title complex, [Cu(C10H11N2O3)(NO3)]·H2O, prepared from the Schiff base N′-(3-meth­oxy-2-oxidobenzyl­idene)­acetohydrazide, the CuII atom is coordinated by two O atoms and one N atom from the ligand and one O atom from a nitrate group in a distorted square-planar geometry. The CuII atom has a weak inter­action with another O atom of the nitrate group. The two O atoms of the tridentate Schiff base ligand are in a trans arrangement. O—H(...)O and N—H(...)O hydrogen bonds involving the uncoordinated water mol­ecule are observed.

Related literature

For related structures, see: Ainscough et al. (1998 [triangle]); Koh et al. (1998 [triangle]); Tamboura et al. (2009 [triangle]); You & Zhu (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m136-scheme1.jpg

Experimental

Crystal data

  • [Cu(C10H11N2O3)(NO3)]·H2O
  • M r = 350.77
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m136-efi1.jpg
  • a = 9.274 (2) Å
  • b = 10.455 (4) Å
  • c = 13.726 (4) Å
  • β = 95.16 (5)°
  • V = 1325.5 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.69 mm−1
  • T = 293 K
  • 0.40 × 0.28 × 0.20 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997 [triangle]) T min = 0.56, T max = 0.72
  • 5500 measured reflections
  • 3046 independent reflections
  • 2493 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.090
  • S = 1.05
  • 3046 reflections
  • 192 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000632/hy2267sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000632/hy2267Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6314PS804).

supplementary crystallographic information

Comment

In the title complex, the CuII ion adopts a four-coordinated geometry with the Schiff base coordinated to the metal ion as a uninegative charged tridentate ligand via the carbonyl O atom, the azomethine N atom and the phenolate O atom. The fourth coordination position is occupied by an O atom of the nitrate group. The CuII ion has a weak interaction with another O atom (O6) of the nitrate (Table 1). The bond distances of Cu—N and Cu—O are similar to the other Cu analogue with the same tridentate ligand (Ainscough et al., 1998). The Cu—O(NO3) distance is similar to the observed value for the complex [Cu(L)NO3] [L = 1-(pyridin-2-ylmethyliminomethyl)naphtalen-2-olato] (You & Zhu, 2004). The two O donor atoms of the ligand are in a trans arrangement with an O—Cu—O angle of 173.76 (6)°. The angles around Cu are in a range of 81.49 (7)–173.76 (6)° and sum of the angles at Cu is 360.4°, suggesting that the geometry around the Cu atom is distorted square-planar (Fig. 1).

Experimental

All purchased chemicals and solvents were reagent grade and used without further purification. The solid-state IR spectra were recorded from KBr discs on a Nicolet spectrophotometer. To a mixture of the ligand (0.211 g, 1.0 mmol) and 20 ml of ethanol was added dropwise a solution of copper nitrate dihydrate (0.242 g, 2.0 mmol) in 10 ml of ethanol. The resulting mixture was stirred under reflux for 2 h. After cooling the solution was filtered and the filtrate was left for slow evaporation. Green crystals of the title compound were obtained in good yield (0.290 g, 82.7%). IR (cm-1): 3403, 1604, 1578, 1445, 1291, 1248, 1082, 1004, 331, 273. Melting point 196±1°C. Analysis, calculated for C10H13CuN3O7: C 34.24, H 3.74, N 11.98%; found: C 34.26, H 3.73, N 16.15%. Single crystals suitable for X-ray analysis were obtained from slow evaporation of a methanol solution of the product.

Refinement

Water H atoms and amine H atoms of the Schiff base ligand were located from a difference Fourier map and refined as riding atoms with Uiso(H) = 1.2Ueq(N,O). Other H atoms were placed geometrically and refined with a riding model, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[Cu(C10H11N2O3)(NO3)]·H2OF(000) = 716
Mr = 350.77Dx = 1.758 Mg m3
Monoclinic, P21/cMelting point: 469 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71070 Å
a = 9.274 (2) ÅCell parameters from 12725 reflections
b = 10.455 (4) Åθ = 1.0–27.5°
c = 13.726 (4) ŵ = 1.69 mm1
β = 95.16 (5)°T = 293 K
V = 1325.5 (7) Å3Prism, green
Z = 40.40 × 0.28 × 0.20 mm

Data collection

Nonius KappaCCD diffractometer3046 independent reflections
Radiation source: fine-focus sealed tube2493 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997)h = −12→12
Tmin = 0.56, Tmax = 0.72k = −13→12
5500 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0515P)2 + 0.2512P] where P = (Fo2 + 2Fc2)/3
3046 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.44 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.09934 (3)0.23847 (2)0.104081 (19)0.03448 (11)
O10.20916 (16)0.08774 (13)0.10007 (12)0.0391 (3)
O20.39441 (16)−0.09065 (15)0.07532 (13)0.0489 (4)
O3−0.02563 (16)0.38826 (14)0.12039 (12)0.0417 (4)
O40.25659 (17)0.34556 (16)0.06197 (12)0.0464 (4)
O50.40681 (19)0.48337 (19)0.13003 (19)0.0784 (7)
O60.2791 (2)0.3648 (2)0.21931 (14)0.0662 (5)
O7−0.45344 (19)0.13264 (18)0.18452 (13)0.0589 (5)
H1O−0.53710.11480.14550.071*
H2O−0.43180.07720.23580.071*
N1−0.07247 (18)0.14998 (17)0.13266 (12)0.0321 (4)
N2−0.1848 (2)0.23436 (17)0.14647 (14)0.0362 (4)
H2N−0.26940.20920.15910.043*
N30.31622 (19)0.39954 (18)0.13960 (18)0.0477 (5)
C10.1588 (2)−0.02931 (19)0.10347 (14)0.0323 (4)
C20.0145 (2)−0.0638 (2)0.11923 (14)0.0336 (4)
C3−0.0258 (3)−0.1947 (2)0.11989 (16)0.0404 (5)
H3−0.1210−0.21630.12880.048*
C40.0720 (3)−0.2894 (2)0.10779 (16)0.0435 (5)
H40.0438−0.37470.10870.052*
C50.2160 (3)−0.2570 (2)0.09391 (17)0.0405 (5)
H50.2833−0.32140.08650.049*
C60.2581 (2)−0.1313 (2)0.09123 (15)0.0351 (4)
C7−0.0955 (2)0.0287 (2)0.13384 (15)0.0360 (5)
H7−0.1876−0.00020.14470.043*
C80.5026 (3)−0.1853 (3)0.0650 (2)0.0549 (6)
H8A0.5203−0.23180.12510.082*
H8B0.5904−0.14460.04940.082*
H8C0.4699−0.24320.01340.082*
C9−0.1505 (2)0.3575 (2)0.13847 (15)0.0371 (5)
C10−0.2645 (3)0.4550 (2)0.14953 (19)0.0504 (6)
H10A−0.22740.52000.19440.076*
H10B−0.34700.41490.17420.076*
H10C−0.29290.49310.08710.076*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.03077 (17)0.02852 (15)0.04481 (18)−0.00120 (9)0.00701 (11)−0.00130 (10)
O10.0317 (8)0.0291 (7)0.0572 (9)−0.0018 (6)0.0082 (7)−0.0017 (6)
O20.0358 (9)0.0386 (9)0.0730 (11)0.0047 (7)0.0088 (8)−0.0013 (8)
O30.0378 (8)0.0344 (8)0.0534 (9)0.0008 (6)0.0068 (7)−0.0025 (7)
O40.0435 (9)0.0413 (9)0.0556 (10)−0.0083 (7)0.0114 (7)−0.0026 (7)
O50.0368 (10)0.0432 (11)0.154 (2)−0.0105 (8)0.0007 (12)−0.0053 (12)
O60.0606 (12)0.0783 (14)0.0591 (12)0.0034 (10)0.0021 (10)−0.0132 (10)
O70.0467 (10)0.0621 (12)0.0672 (12)−0.0145 (8)0.0010 (9)0.0066 (9)
N10.0288 (8)0.0329 (9)0.0349 (9)0.0014 (7)0.0042 (7)−0.0006 (7)
N20.0283 (9)0.0406 (10)0.0404 (10)0.0032 (7)0.0065 (8)−0.0008 (7)
N30.0280 (9)0.0326 (10)0.0819 (16)0.0059 (8)0.0016 (10)−0.0071 (10)
C10.0359 (11)0.0303 (10)0.0300 (10)−0.0017 (8)−0.0009 (8)0.0011 (8)
C20.0366 (11)0.0336 (10)0.0304 (10)−0.0023 (8)0.0030 (8)0.0009 (8)
C30.0422 (13)0.0352 (12)0.0439 (12)−0.0087 (9)0.0051 (10)0.0011 (10)
C40.0575 (15)0.0283 (10)0.0442 (12)−0.0059 (10)0.0011 (11)0.0021 (9)
C50.0499 (14)0.0320 (11)0.0386 (12)0.0059 (9)−0.0008 (10)0.0000 (8)
C60.0358 (11)0.0354 (11)0.0335 (10)0.0018 (9)0.0011 (8)−0.0005 (8)
C70.0315 (11)0.0403 (12)0.0364 (11)−0.0064 (8)0.0033 (9)0.0012 (9)
C80.0411 (13)0.0506 (15)0.0730 (17)0.0135 (11)0.0048 (12)−0.0068 (13)
C90.0374 (12)0.0396 (11)0.0337 (11)0.0045 (9)−0.0007 (8)−0.0009 (9)
C100.0473 (14)0.0481 (14)0.0555 (14)0.0140 (11)0.0023 (11)0.0005 (11)

Geometric parameters (Å, °)

Cu1—N11.9134 (18)C1—C21.422 (3)
Cu1—O11.8798 (15)C1—C61.428 (3)
Cu1—O31.9730 (16)C2—C31.419 (3)
Cu1—O41.9663 (16)C2—C71.433 (3)
Cu1—O62.559 (2)C3—C41.363 (4)
O1—C11.312 (2)C3—H30.9300
O2—C61.370 (3)C4—C51.407 (3)
O2—C81.425 (3)C4—H40.9300
O3—C91.248 (3)C5—C61.373 (3)
O4—N31.286 (3)C5—H50.9300
O5—N31.229 (3)C7—H70.9300
O6—N31.231 (3)C8—H8A0.9600
O7—H1O0.92C8—H8B0.9600
O7—H2O0.92C8—H8C0.9600
N1—C71.286 (3)C9—C101.486 (3)
N1—N21.391 (2)C10—H10A0.9600
N2—C91.333 (3)C10—H10B0.9600
N2—H2N0.8600C10—H10C0.9600
O1—Cu1—N193.67 (7)C4—C3—C2121.4 (2)
O1—Cu1—O492.90 (7)C4—C3—H3119.3
N1—Cu1—O4171.47 (7)C2—C3—H3119.3
O1—Cu1—O3173.76 (6)C3—C4—C5119.5 (2)
N1—Cu1—O381.49 (7)C3—C4—H4120.3
O4—Cu1—O392.30 (7)C5—C4—H4120.3
O1—Cu1—O697.25 (7)C6—C5—C4120.7 (2)
O3—Cu1—O682.93 (7)C6—C5—H5119.7
O4—Cu1—O655.16 (7)C4—C5—H5119.7
N1—Cu1—O6129.12 (7)O2—C6—C5124.8 (2)
C1—O1—Cu1125.84 (13)O2—C6—C1113.64 (18)
C6—O2—C8117.93 (18)C5—C6—C1121.6 (2)
C9—O3—Cu1112.53 (14)N1—C7—C2122.85 (19)
N3—O4—Cu1106.34 (13)N1—C7—H7118.6
H1O—O7—H2O115.6C2—C7—H7118.6
C7—N1—N2119.75 (18)O2—C8—H8A109.5
C7—N1—Cu1128.43 (15)O2—C8—H8B109.5
N2—N1—Cu1111.66 (13)H8A—C8—H8B109.5
C9—N2—N1114.45 (17)O2—C8—H8C109.5
C9—N2—H2N122.8H8A—C8—H8C109.5
N1—N2—H2N122.8H8B—C8—H8C109.5
O5—N3—O6123.6 (2)O3—C9—N2119.85 (19)
O5—N3—O4118.1 (2)O3—C9—C10121.7 (2)
O6—N3—O4118.24 (19)N2—C9—C10118.4 (2)
O1—C1—C2125.80 (19)C9—C10—H10A109.5
O1—C1—C6117.19 (18)C9—C10—H10B109.5
C2—C1—C6117.01 (18)H10A—C10—H10B109.5
C3—C2—C1119.86 (19)C9—C10—H10C109.5
C3—C2—C7117.3 (2)H10A—C10—H10C109.5
C1—C2—C7122.82 (19)H10B—C10—H10C109.5
N1—Cu1—O1—C17.99 (17)C1—C2—C3—C41.5 (3)
O4—Cu1—O1—C1−166.57 (17)C7—C2—C3—C4−179.2 (2)
N1—Cu1—O3—C9−1.29 (15)C2—C3—C4—C5−0.3 (3)
O4—Cu1—O3—C9172.83 (15)C3—C4—C5—C6−0.8 (4)
O1—Cu1—O4—N3−101.08 (13)C8—O2—C6—C5−2.9 (3)
O3—Cu1—O4—N375.48 (14)C8—O2—C6—C1178.26 (19)
O1—Cu1—N1—C7−7.63 (19)C4—C5—C6—O2−178.0 (2)
O3—Cu1—N1—C7176.33 (18)C4—C5—C6—C10.7 (3)
O1—Cu1—N1—N2177.15 (13)O1—C1—C6—O2−1.3 (3)
O3—Cu1—N1—N21.11 (13)C2—C1—C6—O2179.32 (18)
C7—N1—N2—C9−176.51 (19)O1—C1—C6—C5179.8 (2)
Cu1—N1—N2—C9−0.8 (2)C2—C1—C6—C50.4 (3)
Cu1—O4—N3—O5−171.45 (16)N2—N1—C7—C2179.38 (18)
Cu1—O4—N3—O68.3 (2)Cu1—N1—C7—C24.5 (3)
Cu1—O1—C1—C2−5.8 (3)C3—C2—C7—N1−178.50 (19)
Cu1—O1—C1—C6174.91 (14)C1—C2—C7—N10.8 (3)
O1—C1—C2—C3179.18 (19)Cu1—O3—C9—N21.2 (3)
C6—C1—C2—C3−1.5 (3)Cu1—O3—C9—C10−177.50 (16)
O1—C1—C2—C7−0.1 (3)N1—N2—C9—O3−0.3 (3)
C6—C1—C2—C7179.19 (18)N1—N2—C9—C10178.48 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2N···O70.861.952.801 (3)174
O7—H1O···O1i0.922.403.271 (3)159
O7—H1O···O2i0.922.423.050 (3)126
O7—H2O···O5ii0.922.082.984 (3)167

Symmetry codes: (i) x−1, y, z; (ii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2267).

References

  • Ainscough, E. W., Brodie, A. M., Dobbs, A. J., Ranford, J. D. & Waters, J. M. (1998). Inorg. Chim. Acta, 267, 27–38.
  • Koh, L. L., Kon, O. L., Loh, K. W., Long, Y. C., Ranford, J. D., Tan, A. I. L. C. & Tjan, Y. Y. (1998). J. Inorg. Biochem.72, 155–162. [PubMed]
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161. [PMC free article] [PubMed]
  • You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1079–m1080.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography