PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o384–o385.
Published online 2010 January 16. doi:  10.1107/S160053681000142X
PMCID: PMC2979758

[3-(Iodo­acetamido)prop­yl]triphenyl­phospho­nium tetra­phenyl­borate

Abstract

The title compound, C23H24INOP+·C24H20B, was prepared by treatment of 3-amino­propyl triphenyl­phospho­nium bromide hydrogen bromide with p-nitro­phenyl iodo­acetate at 203 K. The asymmetric unit contains a single cation and anion, which are linked in the crystal by inter­molecular N—H(...)π and inversion-related R 2 2(14) C—H(...)O inter­actions, which combine to form chains of cations and anions along the c axis.

Related literature

For the development and applications of mitochondrially targeted bio-active compounds, see Murphy & Smith (2007 [triangle]); Porteous et al. (2010 [triangle]). For the use of iodo­acetamides in labelling cysteine residues, see Baty et al. (2002 [triangle]); Kim et al. (2000 [triangle]); Ying et al. (2007 [triangle]). For the synthesis of amino­alkyl triphenyl­phospho­nium salts, see McAllister et al. (1980 [triangle]). For the synthesis of iodo­acetamides, see Trujillo et al. (1991 [triangle]). For related structures see Czerwinski (1986 [triangle]); Dubourg et al. (1986 [triangle]); Kerrigan et al.(1996 [triangle]); Lo et al.(2002 [triangle]). For a review of hydrogen bonding networks, see Bernstein et al.(1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o384-scheme1.jpg

Experimental

Crystal data

  • C23H24INOP+·C24H20B
  • M r = 807.51
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o384-efi2.jpg
  • a = 14.552 (3) Å
  • b = 12.108 (2) Å
  • c = 21.966 (4) Å
  • β = 99.49 (3)°
  • V = 3817.3 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.92 mm−1
  • T = 89 K
  • 0.22 × 0.20 × 0.2 0mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.661, T max = 0.832
  • 38267 measured reflections
  • 9958 independent reflections
  • 7291 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.103
  • S = 1.11
  • 9958 reflections
  • 469 parameters
  • H-atom parameters constrained
  • Δρmax = 0.74 e Å−3
  • Δρmin = −0.99 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2006 [triangle]); data reduction: SAINT (Bruker, 2006 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]), enCIFer (Allen et al., 2004 [triangle]) and publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000142X/nc2174sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000142X/nc2174Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks Professor Robin Smith for access to materials and research facilities, and the BBSRC for financial support (contract No. BB/D020786/1).

supplementary crystallographic information

Comment

One aspect of our research into mitochondrially targeted bio-active agents (Murphy and Smith, 2007) involves synthesis of a series of targeted iodoacetamides from aminoalkyl-triphenylphosphonium salts (Porteous et al., 2010). The use of iodoacetamides in labelling of cysteine residues in proteins and peptides is well established (Ying et al., 2007) allowing attachment of key markers such as fluorescein (Baty et al., 2002) or biotin (Kim et al., 2000). Given the widespread use of the iodoacetamide functionality it is surprising that there appears to be no structural data available for non-aryl iodoacetamides.

The title compound crystallizes with one cation and anion in the asymmetric unit (Fig. 1). The bond distances within the iodoacetamide functionality [C(5)—I(1) 2.172 (3) Å, N(1)—C(4) 1.344 (3)Å and C(4)—O(1) 1.233 (3) Å] are equivalent to those reported for 4-chloro-7-(iodoacetyl)amino-3-methoxy isocoumarin [2.139 (9) Å, 1.363 (13)Å and 1.209 (14) Å; Kerrigan et al., 1996] and N-(ferrocenyl)iodoacetamide [2.152 (5) Å, 1.348 (6)Å and 1.234 (5) Å; Lo et al., 2002] indicating that the presence of the triphenylphosphonium cation has a negligible effect. The C(1)—P(1) [1.810 (3) Å] and C(3)—N(1) [1.462 (3) Å] distances mirror those observed for both dimethylamino-3-propyl triphenylphosphonium chloride [1.802 (3)Å and 1.496 (9) Å; Dubourg et al., 1986] and 2-aminoethyltriphenylphosphonium bromide hydrogen bromide [1.796 (5)Å and 1.512 (6) Å; Czerwinski, 1986].

The crystal packing is dominated by intermolecular N—H···π and C—H···O interactions (Fig. 2). The H(1)···CT and N(1)···CT distances [2.56Å and 3.382 (3) Å, where CT is the centroid of an adjacent C61—C66 ring on the tetraphenylborate anion] are indicative of a H-bonding interaction. In addition, there are inversion related C(1)—H(1B)···O(1) interactions [H(1B)···O(1) 2.48 Å, C(1)···O(1) 3.270 (3) Å] forming R22 (14) ring motifs (Bernstein et al., 1995). The combination of these two types of interactions form chains of cations and anions as viewed along the c axis.

Experimental

The title compound was prepared from 3-aminopropyl triphenylphosphonium bromide hydrogen bromide (prepared using methods similar to McAllister et al., 1980) using a modified literature procedure (Trujillo et al., 1991). Triethylamine (0.43 mmol) was added to a dichloromethane solution (20 mL) of 3-aminopropyl triphenylphosphonium bromide hydrogen bromide (0.43 mmol), the solution cooled to -70°C and solid p-nitrophenyl iodoacetate (0.43 mmol) added in one portion. The solution was stirred at -70°C for 20 minutes and the solvent removed under vacuum. The solid residue was dissolved in acetone (5 mL), excess sodium tetraphenylborate (1 mmol) added and the solution stirred for 2 h at room temperature. Solvent was removed under vacuum, the compound redissolved in dichloromethane (2 mL) and precipitated by addition to diethylther (20 mL). Crystals were prepared by vapour diffusion of diethylether into an ethanolic solution of the compound at room temperature.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and 0.86 Å, Uiso = 1.2Ueq (N) for the NH atom.

Figures

Fig. 1.
View of the two ions in the asymmetric unit showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level with H atoms represented by circles of arbitrary size.
Fig. 2.
View along the c axis indicating the N···π and C—H···O R22(14) hydrogen bonding network in the crystal. Hydrogen bonds and the N—H···π interactions ...

Crystal data

C23H24INOP+·C24H20BF(000) = 1656
Mr = 807.51Dx = 1.405 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6317 reflections
a = 14.552 (3) Åθ = 2.5–28.7°
b = 12.108 (2) ŵ = 0.92 mm1
c = 21.966 (4) ÅT = 89 K
β = 99.49 (3)°Prism, colourless
V = 3817.3 (13) Å30.22 × 0.2 × 0.2 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer9958 independent reflections
Radiation source: fine-focus sealed tube7291 reflections with I > 2σ(I)
graphiteRint = 0.049
[var phi] and ω scansθmax = 29.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2006)h = −13→19
Tmin = 0.661, Tmax = 0.832k = −16→16
38267 measured reflectionsl = −29→29

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + (0.0467P)2] where P = (Fo2 + 2Fc2)/3
9958 reflections(Δ/σ)max = 0.002
469 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = −0.99 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.64225 (17)0.08981 (19)0.51219 (11)0.0171 (5)
H1A0.62310.1580.52970.02*
H1B0.58650.05490.49020.02*
C20.68361 (17)0.01362 (19)0.56566 (11)0.0182 (5)
H2A0.6959−0.05840.54940.022*
H2B0.74240.04390.58610.022*
C30.61750 (18)0.00073 (19)0.61254 (11)0.0204 (5)
H3A0.5628−0.03990.59360.025*
H3B0.6482−0.04230.64730.025*
C40.51294 (18)0.1611 (2)0.60641 (11)0.0204 (5)
C50.49861 (18)0.2755 (2)0.63068 (12)0.0240 (6)
H5A0.5210.27830.67480.029*
H5B0.43280.29370.62350.029*
C110.73474 (16)0.00477 (19)0.41211 (11)0.0160 (5)
C120.78439 (18)−0.08572 (19)0.44061 (12)0.0203 (5)
H120.8178−0.07920.48040.024*
C130.78336 (18)−0.1849 (2)0.40913 (13)0.0262 (6)
H130.815−0.24570.42810.031*
C140.73523 (18)−0.1936 (2)0.34938 (13)0.0269 (6)
H140.7342−0.26080.32870.032*
C150.6888 (2)−0.1039 (2)0.32005 (13)0.0258 (6)
H150.6585−0.10980.27950.031*
C160.68773 (18)−0.0041 (2)0.35196 (11)0.0204 (5)
H160.65550.05630.33290.024*
C210.65711 (17)0.22816 (18)0.40569 (10)0.0166 (5)
C220.56359 (17)0.25297 (19)0.40603 (11)0.0178 (5)
H220.53150.21790.43380.021*
C230.51862 (18)0.3302 (2)0.36477 (12)0.0221 (6)
H230.45620.34660.36480.026*
C240.5667 (2)0.3832 (2)0.32344 (12)0.0239 (6)
H240.53610.43440.29570.029*
C250.6600 (2)0.3600 (2)0.32343 (12)0.0259 (6)
H250.69210.39620.2960.031*
C260.70566 (18)0.2824 (2)0.36446 (11)0.0221 (6)
H260.76820.26670.36450.027*
C310.82434 (17)0.18234 (19)0.49480 (10)0.0153 (5)
C320.90545 (17)0.1740 (2)0.46827 (11)0.0187 (5)
H320.9060.13110.43320.022*
C330.98484 (18)0.2306 (2)0.49516 (11)0.0224 (6)
H331.03880.2270.47770.027*
C340.98368 (18)0.2925 (2)0.54801 (12)0.0221 (6)
H341.03720.330.56580.027*
C350.90392 (17)0.29959 (19)0.57498 (11)0.0189 (5)
H350.90450.34080.61080.023*
C360.82383 (18)0.24521 (18)0.54849 (10)0.0167 (5)
H360.770.25020.5660.02*
N10.58821 (15)0.10650 (16)0.63510 (9)0.0203 (5)
H10.62020.13470.66780.024*
O10.46005 (13)0.12292 (14)0.56173 (8)0.0247 (4)
P10.71663 (4)0.12487 (5)0.45667 (3)0.01393 (14)
I10.574759 (12)0.392989 (13)0.583303 (8)0.02472 (7)
C410.96560 (17)0.56909 (19)0.67978 (10)0.0158 (5)
C420.95432 (17)0.48566 (19)0.72216 (10)0.0158 (5)
H420.90330.48910.74260.019*
C431.01627 (18)0.39780 (19)0.73499 (11)0.0189 (5)
H431.00560.34390.76320.023*
C441.09355 (19)0.3903 (2)0.70599 (12)0.0217 (6)
H441.13470.33140.71430.026*
C451.10912 (18)0.4726 (2)0.66406 (11)0.0215 (6)
H451.16130.46960.64470.026*
C461.04555 (17)0.5590 (2)0.65170 (11)0.0177 (5)
H461.05640.61280.62350.021*
C510.82725 (17)0.64150 (19)0.59114 (11)0.0161 (5)
C520.85473 (18)0.5664 (2)0.54902 (11)0.0189 (5)
H520.91470.53740.55720.023*
C530.7963 (2)0.5332 (2)0.49554 (12)0.0258 (6)
H530.8170.48180.46940.031*
C540.7073 (2)0.5763 (2)0.48112 (12)0.0265 (6)
H540.66760.55330.44580.032*
C550.67821 (19)0.6545 (2)0.52008 (12)0.0269 (6)
H550.61930.68580.51030.032*
C560.73713 (18)0.6860 (2)0.57372 (11)0.0220 (6)
H560.71630.73860.59910.026*
C610.81277 (16)0.67687 (19)0.70793 (10)0.0153 (5)
C620.74884 (17)0.58898 (19)0.71142 (11)0.0176 (5)
H620.75190.52760.68640.021*
C630.68308 (18)0.58957 (19)0.74946 (11)0.0190 (5)
H630.64480.52840.75070.023*
C640.67309 (18)0.6812 (2)0.78639 (11)0.0199 (5)
H640.62810.68230.81190.024*
C650.73185 (17)0.7703 (2)0.78403 (11)0.0195 (5)
H650.72580.83280.80770.023*
C660.80049 (17)0.76719 (19)0.74611 (11)0.0177 (5)
H660.83980.82780.74620.021*
C710.94558 (16)0.78910 (19)0.66057 (10)0.0152 (5)
C721.03056 (18)0.8086 (2)0.69976 (11)0.0200 (5)
H721.05650.75190.72560.024*
C731.07757 (19)0.9091 (2)0.70155 (12)0.0233 (6)
H731.13420.91780.72770.028*
C741.04013 (19)0.9965 (2)0.66442 (11)0.0220 (6)
H741.0711.06390.66560.026*
C750.95639 (18)0.9812 (2)0.62579 (11)0.0214 (5)
H750.93061.03860.60050.026*
C760.91000 (18)0.87998 (18)0.62445 (11)0.0179 (5)
H760.8530.87240.59850.021*
B10.8892 (2)0.6704 (2)0.66017 (12)0.0159 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0157 (12)0.0186 (13)0.0157 (12)−0.0002 (9)−0.0007 (10)−0.0002 (9)
C20.0203 (13)0.0175 (12)0.0160 (12)−0.0005 (10)0.0004 (10)0.0020 (10)
C30.0259 (14)0.0173 (13)0.0174 (12)−0.0036 (10)0.0016 (11)0.0040 (10)
C40.0197 (13)0.0252 (14)0.0178 (12)−0.0049 (10)0.0078 (11)−0.0010 (11)
C50.0222 (14)0.0271 (14)0.0238 (14)0.0007 (11)0.0069 (11)−0.0051 (11)
C110.0156 (12)0.0179 (12)0.0149 (11)−0.0014 (9)0.0038 (10)−0.0006 (9)
C120.0192 (13)0.0203 (13)0.0202 (13)0.0029 (10)−0.0006 (11)0.0004 (10)
C130.0201 (14)0.0210 (14)0.0378 (16)0.0034 (10)0.0055 (12)0.0010 (12)
C140.0235 (14)0.0225 (14)0.0372 (16)−0.0044 (11)0.0125 (13)−0.0142 (12)
C150.0246 (15)0.0299 (15)0.0218 (14)−0.0054 (11)0.0006 (12)−0.0099 (11)
C160.0211 (13)0.0207 (13)0.0182 (12)−0.0026 (10)−0.0004 (11)−0.0011 (10)
C210.0187 (13)0.0134 (12)0.0158 (12)−0.0001 (9)−0.0027 (10)−0.0008 (9)
C220.0204 (13)0.0149 (12)0.0170 (12)−0.0002 (9)−0.0001 (10)−0.0002 (10)
C230.0183 (13)0.0213 (14)0.0241 (13)0.0047 (10)−0.0035 (11)−0.0001 (11)
C240.0295 (15)0.0178 (13)0.0223 (14)0.0035 (10)−0.0014 (12)0.0050 (10)
C250.0284 (15)0.0243 (14)0.0246 (14)−0.0009 (11)0.0031 (12)0.0097 (11)
C260.0187 (13)0.0259 (14)0.0215 (13)0.0001 (11)0.0026 (11)0.0054 (11)
C310.0172 (12)0.0144 (12)0.0129 (11)0.0015 (9)−0.0019 (10)0.0008 (9)
C320.0196 (13)0.0219 (13)0.0139 (12)0.0003 (10)0.0007 (10)−0.0034 (10)
C330.0170 (13)0.0292 (15)0.0208 (13)−0.0016 (11)0.0022 (11)−0.0036 (11)
C340.0192 (13)0.0223 (13)0.0229 (13)−0.0034 (10)−0.0026 (11)−0.0032 (11)
C350.0256 (14)0.0168 (13)0.0134 (12)−0.0015 (10)0.0005 (11)−0.0028 (9)
C360.0211 (13)0.0142 (12)0.0146 (11)0.0015 (9)0.0021 (10)0.0001 (9)
N10.0238 (12)0.0224 (11)0.0138 (10)−0.0016 (9)0.0007 (9)−0.0022 (8)
O10.0191 (10)0.0288 (10)0.0253 (10)−0.0038 (7)0.0005 (8)−0.0048 (8)
P10.0146 (3)0.0143 (3)0.0118 (3)0.0008 (2)−0.0009 (2)0.0000 (2)
I10.02367 (10)0.01857 (10)0.03027 (11)0.00050 (7)−0.00038 (8)−0.00280 (7)
C410.0184 (12)0.0158 (12)0.0110 (11)−0.0013 (9)−0.0041 (10)−0.0040 (9)
C420.0163 (12)0.0184 (12)0.0120 (11)0.0009 (9)0.0001 (10)−0.0028 (9)
C430.0236 (14)0.0172 (13)0.0150 (12)0.0009 (10)0.0007 (11)0.0006 (10)
C440.0246 (14)0.0191 (13)0.0188 (13)0.0078 (10)−0.0042 (11)−0.0028 (10)
C450.0177 (13)0.0284 (14)0.0176 (12)0.0043 (11)0.0007 (11)−0.0063 (11)
C460.0197 (13)0.0193 (12)0.0133 (12)0.0004 (10)0.0000 (10)0.0003 (10)
C510.0213 (13)0.0109 (11)0.0158 (12)−0.0017 (9)0.0019 (10)0.0024 (9)
C520.0200 (13)0.0173 (12)0.0187 (13)0.0000 (10)0.0014 (11)0.0025 (10)
C530.0397 (17)0.0193 (14)0.0163 (13)−0.0018 (11)−0.0014 (12)−0.0023 (10)
C540.0310 (16)0.0281 (15)0.0166 (13)−0.0054 (12)−0.0074 (12)0.0011 (11)
C550.0217 (14)0.0336 (16)0.0223 (14)0.0021 (12)−0.0057 (12)0.0061 (12)
C560.0248 (14)0.0206 (13)0.0192 (13)0.0013 (10)−0.0004 (11)0.0005 (10)
C610.0144 (12)0.0152 (12)0.0146 (11)0.0036 (9)−0.0028 (10)0.0021 (9)
C620.0177 (12)0.0133 (12)0.0199 (13)0.0025 (9)−0.0027 (10)−0.0013 (9)
C630.0192 (13)0.0152 (13)0.0220 (13)0.0022 (9)0.0014 (11)0.0013 (10)
C640.0183 (13)0.0242 (14)0.0172 (12)0.0032 (10)0.0031 (10)0.0036 (10)
C650.0260 (14)0.0156 (13)0.0168 (12)0.0031 (10)0.0029 (11)−0.0036 (10)
C660.0186 (13)0.0150 (12)0.0182 (12)−0.0014 (9)−0.0008 (10)0.0012 (10)
C710.0178 (12)0.0159 (12)0.0119 (11)0.0013 (9)0.0028 (10)−0.0020 (9)
C720.0237 (14)0.0184 (13)0.0161 (12)−0.0002 (10)−0.0019 (11)−0.0006 (10)
C730.0238 (14)0.0235 (14)0.0213 (14)−0.0034 (10)0.0003 (12)−0.0073 (11)
C740.0285 (15)0.0153 (13)0.0243 (14)−0.0033 (10)0.0103 (12)−0.0033 (10)
C750.0278 (15)0.0164 (13)0.0204 (13)0.0044 (10)0.0051 (11)0.0044 (10)
C760.0176 (13)0.0172 (13)0.0185 (12)0.0040 (9)0.0018 (10)−0.0002 (10)
B10.0187 (14)0.0131 (13)0.0141 (13)0.0007 (10)−0.0027 (11)0.0010 (10)

Geometric parameters (Å, °)

C1—C21.536 (3)C36—H360.93
C1—P11.810 (3)N1—H10.86
C1—H1A0.97C41—C421.402 (3)
C1—H1B0.97C41—C461.409 (3)
C2—C31.529 (3)C41—B11.664 (4)
C2—H2A0.97C42—C431.393 (3)
C2—H2B0.97C42—H420.93
C3—N11.462 (3)C43—C441.384 (4)
C3—H3A0.97C43—H430.93
C3—H3B0.97C44—C451.400 (4)
C4—O11.233 (3)C44—H440.93
C4—N11.344 (3)C45—C461.394 (3)
C4—C51.511 (3)C45—H450.93
C5—I12.172 (3)C46—H460.93
C5—H5A0.97C51—C521.402 (4)
C5—H5B0.97C51—C561.411 (3)
C11—C161.388 (3)C51—B11.668 (3)
C11—C121.402 (3)C52—C531.391 (3)
C11—P11.796 (2)C52—H520.93
C12—C131.384 (3)C53—C541.383 (4)
C12—H120.93C53—H530.93
C13—C141.386 (4)C54—C551.389 (4)
C13—H130.93C54—H540.93
C14—C151.382 (4)C55—C561.391 (3)
C14—H140.93C55—H550.93
C15—C161.398 (3)C56—H560.93
C15—H150.93C61—C661.407 (3)
C16—H160.93C61—C621.424 (3)
C21—C221.395 (3)C61—B11.652 (4)
C21—C261.401 (3)C62—C631.370 (4)
C21—P11.802 (2)C62—H620.93
C22—C231.389 (3)C63—C641.396 (3)
C22—H220.93C63—H630.93
C23—C241.391 (4)C64—C651.383 (3)
C23—H230.93C64—H640.93
C24—C251.387 (4)C65—C661.403 (3)
C24—H240.93C65—H650.93
C25—C261.392 (3)C66—H660.93
C25—H250.93C71—C761.405 (3)
C26—H260.93C71—C721.405 (3)
C31—C321.404 (3)C71—B11.654 (4)
C31—C361.405 (3)C72—C731.394 (3)
C31—P11.791 (2)C72—H720.93
C32—C331.389 (3)C73—C741.391 (4)
C32—H320.93C73—H730.93
C33—C341.384 (3)C74—C751.378 (4)
C33—H330.93C74—H740.93
C34—C351.390 (4)C75—C761.397 (3)
C34—H340.93C75—H750.93
C35—C361.381 (3)C76—H760.93
C35—H350.93
C2—C1—P1116.98 (17)C31—P1—C11111.93 (11)
C2—C1—H1A108.1C31—P1—C21108.34 (11)
P1—C1—H1A108.1C11—P1—C21108.77 (11)
C2—C1—H1B108.1C31—P1—C1110.52 (11)
P1—C1—H1B108.1C11—P1—C1109.58 (11)
H1A—C1—H1B107.3C21—P1—C1107.58 (11)
C3—C2—C1111.4 (2)C42—C41—C46115.1 (2)
C3—C2—H2A109.3C42—C41—B1123.8 (2)
C1—C2—H2A109.3C46—C41—B1121.0 (2)
C3—C2—H2B109.3C43—C42—C41122.8 (2)
C1—C2—H2B109.3C43—C42—H42118.6
H2A—C2—H2B108C41—C42—H42118.6
N1—C3—C2112.95 (19)C44—C43—C42120.3 (2)
N1—C3—H3A109C44—C43—H43119.8
C2—C3—H3A109C42—C43—H43119.8
N1—C3—H3B109C43—C44—C45119.2 (2)
C2—C3—H3B109C43—C44—H44120.4
H3A—C3—H3B107.8C45—C44—H44120.4
O1—C4—N1122.9 (2)C46—C45—C44119.2 (2)
O1—C4—C5121.3 (2)C46—C45—H45120.4
N1—C4—C5115.8 (2)C44—C45—H45120.4
C4—C5—I1108.70 (16)C45—C46—C41123.3 (2)
C4—C5—H5A110C45—C46—H46118.3
I1—C5—H5A110C41—C46—H46118.3
C4—C5—H5B110C52—C51—C56115.0 (2)
I1—C5—H5B110C52—C51—B1124.5 (2)
H5A—C5—H5B108.3C56—C51—B1120.3 (2)
C16—C11—C12120.1 (2)C53—C52—C51122.9 (2)
C16—C11—P1119.20 (19)C53—C52—H52118.5
C12—C11—P1120.03 (18)C51—C52—H52118.5
C13—C12—C11119.5 (2)C54—C53—C52120.2 (2)
C13—C12—H12120.2C54—C53—H53119.9
C11—C12—H12120.2C52—C53—H53119.9
C12—C13—C14120.1 (2)C53—C54—C55119.1 (2)
C12—C13—H13120C53—C54—H54120.5
C14—C13—H13120C55—C54—H54120.5
C15—C14—C13120.9 (2)C54—C55—C56120.1 (3)
C15—C14—H14119.5C54—C55—H55120
C13—C14—H14119.5C56—C55—H55120
C14—C15—C16119.4 (2)C55—C56—C51122.7 (2)
C14—C15—H15120.3C55—C56—H56118.7
C16—C15—H15120.3C51—C56—H56118.7
C11—C16—C15120.0 (2)C66—C61—C62113.6 (2)
C11—C16—H16120C66—C61—B1125.5 (2)
C15—C16—H16120C62—C61—B1120.9 (2)
C22—C21—C26119.9 (2)C63—C62—C61123.9 (2)
C22—C21—P1121.02 (18)C63—C62—H62118.1
C26—C21—P1119.03 (19)C61—C62—H62118.1
C23—C22—C21119.8 (2)C62—C63—C64120.6 (2)
C23—C22—H22120.1C62—C63—H63119.7
C21—C22—H22120.1C64—C63—H63119.7
C22—C23—C24120.2 (2)C65—C64—C63118.3 (2)
C22—C23—H23119.9C65—C64—H64120.9
C24—C23—H23119.9C63—C64—H64120.9
C25—C24—C23120.3 (2)C64—C65—C66120.4 (2)
C25—C24—H24119.8C64—C65—H65119.8
C23—C24—H24119.8C66—C65—H65119.8
C24—C25—C26119.9 (3)C65—C66—C61123.2 (2)
C24—C25—H25120C65—C66—H66118.4
C26—C25—H25120C61—C66—H66118.4
C25—C26—C21119.8 (2)C76—C71—C72114.8 (2)
C25—C26—H26120.1C76—C71—B1122.8 (2)
C21—C26—H26120.1C72—C71—B1122.3 (2)
C32—C31—C36120.6 (2)C73—C72—C71122.8 (2)
C32—C31—P1120.57 (18)C73—C72—H72118.6
C36—C31—P1118.53 (19)C71—C72—H72118.6
C33—C32—C31119.0 (2)C74—C73—C72120.3 (2)
C33—C32—H32120.5C74—C73—H73119.8
C31—C32—H32120.5C72—C73—H73119.8
C34—C33—C32120.0 (3)C75—C74—C73118.7 (2)
C34—C33—H33120C75—C74—H74120.7
C32—C33—H33120C73—C74—H74120.7
C33—C34—C35121.1 (2)C74—C75—C76120.4 (2)
C33—C34—H34119.4C74—C75—H75119.8
C35—C34—H34119.4C76—C75—H75119.8
C36—C35—C34119.8 (2)C75—C76—C71122.9 (2)
C36—C35—H35120.1C75—C76—H76118.5
C34—C35—H35120.1C71—C76—H76118.5
C35—C36—C31119.4 (2)C61—B1—C71109.94 (19)
C35—C36—H36120.3C61—B1—C41111.19 (19)
C31—C36—H36120.3C71—B1—C41109.2 (2)
C4—N1—C3122.2 (2)C61—B1—C51105.54 (19)
C4—N1—H1118.9C71—B1—C51112.36 (19)
C3—N1—H1118.9C41—B1—C51108.55 (19)
P1—C1—C2—C3173.97 (16)C41—C42—C43—C440.6 (4)
C1—C2—C3—N1−53.6 (3)C42—C43—C44—C450.6 (4)
O1—C4—C5—I1−89.9 (3)C43—C44—C45—C46−1.1 (4)
N1—C4—C5—I187.8 (2)C44—C45—C46—C410.5 (4)
C16—C11—C12—C13−2.3 (4)C42—C41—C46—C450.6 (3)
P1—C11—C12—C13168.1 (2)B1—C41—C46—C45−176.5 (2)
C11—C12—C13—C141.4 (4)C56—C51—C52—C53−3.3 (4)
C12—C13—C14—C150.8 (4)B1—C51—C52—C53171.2 (2)
C13—C14—C15—C16−2.2 (4)C51—C52—C53—C541.5 (4)
C12—C11—C16—C150.9 (4)C52—C53—C54—C551.2 (4)
P1—C11—C16—C15−169.6 (2)C53—C54—C55—C56−1.9 (4)
C14—C15—C16—C111.4 (4)C54—C55—C56—C51−0.1 (4)
C26—C21—C22—C231.0 (3)C52—C51—C56—C552.6 (4)
P1—C21—C22—C23−177.79 (18)B1—C51—C56—C55−172.1 (2)
C21—C22—C23—C24−0.4 (4)C66—C61—C62—C63−1.9 (3)
C22—C23—C24—C25−0.5 (4)B1—C61—C62—C63−179.2 (2)
C23—C24—C25—C260.7 (4)C61—C62—C63—C642.3 (4)
C24—C25—C26—C210.0 (4)C62—C63—C64—C65−0.7 (4)
C22—C21—C26—C25−0.8 (4)C63—C64—C65—C66−1.0 (4)
P1—C21—C26—C25178.01 (19)C64—C65—C66—C611.4 (4)
C36—C31—C32—C33−1.3 (3)C62—C61—C66—C650.0 (3)
P1—C31—C32—C33172.33 (19)B1—C61—C66—C65177.3 (2)
C31—C32—C33—C341.2 (4)C76—C71—C72—C73−1.8 (4)
C32—C33—C34—C35−0.2 (4)B1—C71—C72—C73−178.4 (2)
C33—C34—C35—C36−0.8 (4)C71—C72—C73—C741.2 (4)
C34—C35—C36—C310.7 (3)C72—C73—C74—C75−0.4 (4)
C32—C31—C36—C350.4 (3)C73—C74—C75—C760.4 (4)
P1—C31—C36—C35−173.39 (17)C74—C75—C76—C71−1.2 (4)
O1—C4—N1—C34.9 (4)C72—C71—C76—C751.8 (4)
C5—C4—N1—C3−172.7 (2)B1—C71—C76—C75178.4 (2)
C2—C3—N1—C488.6 (3)C66—C61—B1—C71−3.3 (3)
C32—C31—P1—C1131.1 (2)C62—C61—B1—C71173.7 (2)
C36—C31—P1—C11−155.11 (18)C66—C61—B1—C41117.8 (2)
C32—C31—P1—C21−88.8 (2)C62—C61—B1—C41−65.2 (3)
C36—C31—P1—C2185.0 (2)C66—C61—B1—C51−124.7 (2)
C32—C31—P1—C1153.57 (19)C62—C61—B1—C5152.3 (3)
C36—C31—P1—C1−32.7 (2)C76—C71—B1—C61−83.7 (3)
C16—C11—P1—C31−132.7 (2)C72—C71—B1—C6192.7 (3)
C12—C11—P1—C3156.9 (2)C76—C71—B1—C41154.0 (2)
C16—C11—P1—C21−13.0 (2)C72—C71—B1—C41−29.6 (3)
C12—C11—P1—C21176.6 (2)C76—C71—B1—C5133.5 (3)
C16—C11—P1—C1104.4 (2)C72—C71—B1—C51−150.1 (2)
C12—C11—P1—C1−66.1 (2)C42—C41—B1—C6113.2 (3)
C22—C21—P1—C31−130.73 (19)C46—C41—B1—C61−169.9 (2)
C26—C21—P1—C3150.4 (2)C42—C41—B1—C71134.7 (2)
C22—C21—P1—C11107.4 (2)C46—C41—B1—C71−48.4 (3)
C26—C21—P1—C11−71.4 (2)C42—C41—B1—C51−102.5 (2)
C22—C21—P1—C1−11.2 (2)C46—C41—B1—C5174.4 (3)
C26—C21—P1—C1169.94 (19)C52—C51—B1—C61−138.3 (2)
C2—C1—P1—C31−54.4 (2)C56—C51—B1—C6135.9 (3)
C2—C1—P1—C1169.4 (2)C52—C51—B1—C71101.9 (3)
C2—C1—P1—C21−172.53 (17)C56—C51—B1—C71−83.9 (3)
C46—C41—C42—C43−1.2 (3)C52—C51—B1—C41−19.1 (3)
B1—C41—C42—C43175.9 (2)C56—C51—B1—C41155.2 (2)

Hydrogen-bond geometry (Å, °)

CT01 is the centroid of the C61—C66 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···CT01i0.862.563.382 (2)160
C1—H1B···O1ii0.972.483.270 (3)139

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2174).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Baty, J. W., Hampton, M. B. & Winterbourn, C. C. (2002). Proteomics, 2, 1261–1266. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Czerwinski, E. W. (1986). Acta Cryst. C42, 236–239.
  • Dubourg, A., De Castro Dantas, T. N., Klaébé, A. & Declercq, J.-P. (1986). Acta Cryst. C42, 112–114.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kerrigan, J. E., Powers, J. C. & VanDerveer, D. (1996). Acta Cryst. C52, 451–453. [PubMed]
  • Kim, J. R., Yoon, H. W., Kwon, K. S., Lee, S. R. & Rhee, S. G. (2000). Anal. Biochem.283, 214–221. [PubMed]
  • Lo, K. K.-W., Lau, J. S.-Y., Ng, D. C.-M. & Zhu, N. (2002). J. Chem. Soc. Dalton Trans. pp. 1753–1756.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • McAllister, P. R., Dotson, M. J., Grim, S. O. & Hillman, G. R. (1980). J. Med. Chem.23, 862–865. [PubMed]
  • Murphy, M. P. & Smith, R. A. (2007). Annu. Rev. Pharmacol. Toxicol.47, 629–656. [PubMed]
  • Porteous, C. M., Evans, C., Ledgerwood, E., Menon, D. K., Aigbirhio, F., Smith, R. A. J. & Murphy, M. P. (2010). Biochem. Pharmacol. Submitted.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Trujillo, J. G., Ceballos, G., Yañez, R. & Joseph-Nathan, P. (1991). Synth. Commun.21, 683–691.
  • Westrip, S. P. (2010). publCIF In preparation.
  • Ying, J., Clavreul, N., Sethuraman, M., Adachi, T. & Cohen, R. A. (2007). Free Radic. Biol. Med.43, 1099–108. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography