PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o326.
Published online 2010 January 9. doi:  10.1107/S1600536809055482
PMCID: PMC2979754

N-(2-Chloro­benzo­yl)benzene­sulfonamide

Abstract

The asymmetric unit of the title compound, C13H10ClNO3S, contains two independent mol­ecules, the chloro­phenyl ring of one of them being disordered over two orientations with occupancies of 0.836 (2) and 0.164 (2). In one of the independent mol­ecules, the sulfonyl-bound phenyl ring and the chloro­phenyl ring form dihedral angles of 87.3 (1) and 46.8 (1)°, respectively, with the –S–NH–C=O segment, while in the other mol­ecule the corresponding angles are 76.0 (1) and 39.6 (1)°. In the crystal, mol­ecules are linked into tetra­meric units by N—H(...)O hydrogen bonds.

Related literature

For background literature and similar structures, see: Gowda et al. (2009a [triangle],b [triangle]); Suchetan et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o326-scheme1.jpg

Experimental

Crystal data

  • C13H10ClNO3S
  • M r = 295.73
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o326-efi1.jpg
  • a = 7.3390 (5) Å
  • b = 10.828 (1) Å
  • c = 17.685 (1) Å
  • α = 93.088 (6)°
  • β = 96.863 (7)°
  • γ = 103.057 (8)°
  • V = 1354.46 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.44 mm−1
  • T = 299 K
  • 0.50 × 0.44 × 0.24 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.811, T max = 0.902
  • 9641 measured reflections
  • 5521 independent reflections
  • 4327 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.113
  • S = 1.03
  • 5521 reflections
  • 359 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809055482/ci5004sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055482/ci5004Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As part of a study of the effect of ring and the side chain substituents on crystal structures of N-aromatic sulfonamides (Gowda et al., 2009a,b; Suchetan et al., 2009), in the present work, the structure of N-(2-chlorobenzoyl)benzenesulfonamide (I) has been determined (Fig.1).

The asymmetric unit of the title compound contains two independent molecules, A (with S1) and B (with S2). The conformation of the N—H bond in the C—SO2—NH—C(O) segment of the structure is anti to the C═O bond, similar to that observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009a), N-(3-chlorobenzoyl)benzenesulfonamide (III) (Gowda et al., 2009b) and N-(4-chlorobenzoyl)benzenesulfonamide (IV) (Suchetan et al., 2009).

Both independent molecules are twisted at their S atoms; the dihedral angle between the sulfonyl-bound phenyl ring and the S—N(H)—C═O segment is 87.3 (1)° in molecule A and 76.0 (1)° in molecule B, compared to the values of 86.5(0.1) in (II), 89.9 (1)° in (III) and 75.7 (1)° in (IV). Furthermore, the dihedral angle between the chlorophenyl ring and the S—NH—C═O segment is 46.8 (1)° in molecule A and 39.6 (1)° in molecule B.

The dihedral angles between the two phenyl rings in the two molecules of (I) are 69.8 (1)° (molecule A) and 89.8 (1)° (molecule B), compared to the values of 80.3(0.1) in (II), 87.5 (1)° in (III) and 68.6 (1)° in (IV).

The packing of molecules linked by of N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing a mixture of 2-chlorobenzoic acid, benzenesulfonamide and phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized. Rod like colourless single crystals of the title compound were obtained by slow evaporation of its toluene solution at room temperature.

Refinement

One of the Chlorophenyl rings is disordered over two orientations corresponding to a 180° rotation about the C7—C8 bond. The occupancies of the two conformers were refined so that their sum was unity [0.836 (2) and 0.164 (2)]. The C9—Cl1A and C13—CL1B distances were restrained to 1.75 (1) Å.

The H atoms of the NH groups were located in a difference map and refined with the N-H distance restrained to 0.86 (2) %A. The remaining H atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Both disorder components are shown. The minor disorder components are shown with dashed bonds.
Fig. 2.
Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines. For clarity, only the major disorder component is shown.

Crystal data

C13H10ClNO3SZ = 4
Mr = 295.73F(000) = 608
Triclinic, P1Dx = 1.450 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3390 (5) ÅCell parameters from 4232 reflections
b = 10.828 (1) Åθ = 2.9–27.8°
c = 17.685 (1) ŵ = 0.44 mm1
α = 93.088 (6)°T = 299 K
β = 96.863 (7)°Rod, colourless
γ = 103.057 (8)°0.50 × 0.44 × 0.24 mm
V = 1354.46 (17) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector5521 independent reflections
Radiation source: fine-focus sealed tube4327 reflections with I > 2σ(I)
graphiteRint = 0.014
Rotation method data acquisition using ω and [var phi] scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −8→9
Tmin = 0.811, Tmax = 0.902k = −13→13
9641 measured reflectionsl = −22→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0558P)2 + 0.4941P] where P = (Fo2 + 2Fc2)/3
5521 reflections(Δ/σ)max = 0.001
359 parametersΔρmax = 0.38 e Å3
4 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl1A0.80617 (12)0.24676 (7)0.30758 (5)0.0701 (3)0.836 (2)
Cl1B0.8403 (6)−0.1454 (3)0.1258 (2)0.0654 (14)0.164 (2)
S10.74595 (8)0.18519 (6)0.00953 (3)0.05430 (17)
O10.5985 (3)0.11237 (18)−0.04655 (8)0.0717 (5)
O20.9314 (3)0.22227 (19)−0.00917 (10)0.0716 (5)
O30.9713 (2)0.22974 (14)0.16030 (8)0.0560 (4)
N10.7439 (3)0.09130 (18)0.08133 (10)0.0518 (5)
H1N0.649 (3)0.029 (2)0.0776 (14)0.062*
C10.6742 (3)0.3164 (2)0.04645 (11)0.0523 (5)
C20.4851 (4)0.3057 (3)0.05382 (14)0.0684 (7)
H20.39650.23030.03730.082*
C30.4304 (5)0.4070 (4)0.08556 (17)0.0816 (9)
H30.30410.40010.09100.098*
C40.5603 (6)0.5189 (3)0.10952 (17)0.0851 (9)
H40.52180.58750.13090.102*
C50.7469 (5)0.5298 (3)0.10189 (17)0.0813 (8)
H50.83390.60610.11810.098*
C60.8074 (4)0.4290 (2)0.07053 (14)0.0628 (6)
H60.93410.43640.06560.075*
C70.8515 (3)0.13091 (19)0.15128 (11)0.0434 (5)
C80.8065 (3)0.04413 (19)0.21252 (11)0.0430 (5)
C90.7874 (3)0.0905 (2)0.28521 (12)0.0519 (5)
H13B0.80260.17750.29620.062*0.164 (2)
C100.7457 (4)0.0082 (3)0.34149 (15)0.0696 (7)
H100.73210.03990.38990.083*
C110.7248 (4)−0.1190 (3)0.32582 (18)0.0775 (8)
H110.6967−0.17380.36370.093*
C120.7444 (4)−0.1672 (3)0.25526 (18)0.0727 (7)
H120.7317−0.25420.24510.087*
C130.7833 (3)−0.0856 (2)0.19942 (14)0.0568 (6)
H13A0.7944−0.11900.15110.068*0.836 (2)
Cl20.23536 (16)0.10580 (9)0.45805 (4)0.1023 (3)
S20.29519 (8)0.52286 (5)0.28419 (3)0.04751 (15)
O40.1951 (3)0.54542 (16)0.21405 (9)0.0656 (5)
O50.4931 (2)0.57334 (16)0.30069 (11)0.0668 (5)
O60.4183 (3)0.35322 (17)0.39635 (9)0.0690 (5)
N20.2562 (2)0.36633 (16)0.28095 (10)0.0435 (4)
H2N0.175 (3)0.327 (2)0.2468 (11)0.052*
C140.1875 (3)0.57205 (18)0.36012 (12)0.0446 (5)
C15−0.0041 (3)0.5674 (2)0.34812 (15)0.0566 (6)
H15−0.07520.53700.30100.068*
C16−0.0869 (4)0.6085 (3)0.40744 (17)0.0702 (7)
H16−0.21580.60450.40080.084*
C170.0204 (4)0.6556 (3)0.47655 (17)0.0726 (7)
H17−0.03650.68430.51610.087*
C180.2094 (4)0.6607 (3)0.48769 (15)0.0662 (7)
H180.28050.69300.53460.079*
C190.2947 (3)0.6181 (2)0.42967 (13)0.0533 (5)
H190.42300.62040.43720.064*
C200.3323 (3)0.3006 (2)0.33667 (11)0.0437 (5)
C210.3018 (3)0.16165 (19)0.31408 (12)0.0429 (4)
C220.2646 (3)0.0685 (2)0.36477 (14)0.0568 (6)
C230.2407 (4)−0.0596 (3)0.3413 (2)0.0743 (8)
H230.2131−0.12090.37570.089*
C240.2578 (4)−0.0950 (3)0.2678 (2)0.0776 (8)
H240.2428−0.18050.25230.093*
C250.2967 (4)−0.0054 (3)0.21684 (17)0.0689 (7)
H250.3091−0.03000.16690.083*
C260.3177 (3)0.1217 (2)0.23930 (13)0.0515 (5)
H260.34290.18170.20400.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl1A0.0738 (5)0.0520 (4)0.0757 (5)−0.0070 (3)0.0281 (4)−0.0179 (3)
Cl1B0.091 (3)0.050 (2)0.055 (2)0.0276 (19)−0.0028 (18)−0.0126 (15)
S10.0569 (3)0.0613 (4)0.0326 (3)−0.0079 (3)0.0006 (2)0.0020 (2)
O10.0812 (12)0.0787 (12)0.0339 (8)−0.0156 (9)−0.0091 (8)0.0000 (8)
O20.0661 (11)0.0814 (13)0.0610 (10)−0.0014 (9)0.0200 (9)0.0044 (9)
O30.0544 (9)0.0511 (9)0.0462 (8)−0.0111 (7)−0.0141 (7)0.0070 (7)
N10.0528 (11)0.0503 (11)0.0386 (9)−0.0097 (8)−0.0066 (8)0.0021 (8)
C10.0548 (13)0.0623 (14)0.0334 (10)0.0021 (10)−0.0014 (9)0.0125 (9)
C20.0586 (15)0.091 (2)0.0481 (13)0.0007 (14)0.0062 (11)0.0157 (13)
C30.0758 (19)0.118 (3)0.0602 (16)0.0336 (19)0.0178 (14)0.0238 (17)
C40.110 (3)0.093 (2)0.0608 (17)0.039 (2)0.0141 (17)0.0143 (16)
C50.102 (2)0.0620 (17)0.0726 (18)0.0102 (16)−0.0015 (17)0.0043 (14)
C60.0606 (15)0.0611 (15)0.0589 (14)0.0022 (12)−0.0020 (11)0.0095 (12)
C70.0413 (10)0.0411 (11)0.0410 (10)0.0019 (9)−0.0047 (8)−0.0005 (8)
C80.0359 (10)0.0459 (11)0.0406 (10)0.0008 (8)−0.0038 (8)0.0038 (8)
C90.0401 (11)0.0575 (13)0.0489 (12)−0.0036 (9)0.0002 (9)−0.0010 (10)
C100.0580 (15)0.095 (2)0.0468 (13)−0.0030 (14)0.0085 (11)0.0107 (13)
C110.0737 (18)0.081 (2)0.0735 (19)0.0039 (15)0.0069 (14)0.0341 (16)
C120.0743 (17)0.0556 (15)0.087 (2)0.0093 (13)0.0099 (15)0.0240 (14)
C130.0589 (14)0.0477 (13)0.0601 (14)0.0073 (10)0.0029 (11)0.0055 (10)
Cl20.1560 (9)0.1102 (7)0.0606 (4)0.0553 (6)0.0380 (5)0.0304 (4)
S20.0530 (3)0.0358 (3)0.0472 (3)0.0006 (2)0.0003 (2)0.0021 (2)
O40.0932 (13)0.0518 (10)0.0497 (9)0.0166 (9)−0.0012 (8)0.0118 (7)
O50.0538 (9)0.0578 (10)0.0762 (11)−0.0117 (8)0.0120 (8)−0.0072 (8)
O60.0854 (12)0.0619 (10)0.0536 (10)0.0279 (9)−0.0276 (9)−0.0126 (8)
N20.0445 (9)0.0359 (9)0.0430 (9)0.0046 (7)−0.0099 (7)−0.0036 (7)
C140.0483 (11)0.0318 (10)0.0508 (11)0.0082 (8)−0.0018 (9)0.0021 (8)
C150.0538 (13)0.0473 (12)0.0654 (14)0.0139 (10)−0.0096 (11)0.0058 (11)
C160.0562 (15)0.0707 (17)0.091 (2)0.0311 (13)0.0045 (14)0.0136 (15)
C170.087 (2)0.0755 (18)0.0693 (17)0.0443 (16)0.0174 (15)0.0069 (14)
C180.0777 (18)0.0701 (16)0.0520 (14)0.0290 (14)−0.0031 (12)−0.0059 (12)
C190.0502 (12)0.0504 (12)0.0556 (13)0.0129 (10)−0.0056 (10)−0.0037 (10)
C200.0420 (11)0.0476 (11)0.0415 (11)0.0163 (9)−0.0031 (8)−0.0019 (9)
C210.0389 (10)0.0435 (11)0.0478 (11)0.0149 (8)0.0033 (8)0.0011 (9)
C220.0599 (14)0.0578 (14)0.0602 (14)0.0251 (11)0.0128 (11)0.0132 (11)
C230.0720 (17)0.0556 (15)0.102 (2)0.0234 (13)0.0166 (16)0.0241 (15)
C240.0751 (18)0.0477 (15)0.111 (2)0.0223 (13)0.0070 (17)−0.0074 (15)
C250.0631 (15)0.0697 (17)0.0738 (17)0.0223 (13)0.0086 (13)−0.0216 (14)
C260.0457 (12)0.0537 (13)0.0549 (13)0.0145 (10)0.0053 (10)−0.0055 (10)

Geometric parameters (Å, °)

Cl1A—C91.687 (2)C13—H13A0.93
Cl1B—C131.565 (4)Cl2—C221.727 (3)
S1—O21.4137 (18)S2—O51.4201 (17)
S1—O11.4320 (16)S2—O41.4261 (16)
S1—N11.6683 (19)S2—N21.6506 (17)
S1—C11.744 (3)S2—C141.754 (2)
O3—C71.211 (2)O6—C201.204 (2)
N1—C71.376 (2)N2—C201.383 (3)
N1—H1N0.845 (17)N2—H2N0.822 (16)
C1—C21.389 (3)C14—C191.380 (3)
C1—C61.389 (3)C14—C151.386 (3)
C2—C31.366 (4)C15—C161.376 (4)
C2—H20.93C15—H150.93
C3—C41.373 (5)C16—C171.377 (4)
C3—H30.93C16—H160.93
C4—C51.371 (5)C17—C181.366 (4)
C4—H40.93C17—H170.93
C5—C61.381 (4)C18—C191.375 (3)
C5—H50.93C18—H180.93
C6—H60.93C19—H190.93
C7—C81.490 (3)C20—C211.495 (3)
C8—C131.380 (3)C21—C221.388 (3)
C8—C91.389 (3)C21—C261.396 (3)
C9—C101.387 (3)C22—C231.392 (4)
C9—H13B0.93C23—C241.363 (4)
C10—C111.361 (4)C23—H230.93
C10—H100.93C24—C251.366 (4)
C11—C121.363 (4)C24—H240.93
C11—H110.93C25—C261.380 (3)
C12—C131.373 (3)C25—H250.93
C12—H120.93C26—H260.93
O2—S1—O1119.45 (11)C12—C13—H13A118.8
O2—S1—N1109.51 (11)C8—C13—H13A118.8
O1—S1—N1102.84 (10)O5—S2—O4119.97 (11)
O2—S1—C1110.60 (11)O5—S2—N2107.85 (10)
O1—S1—C1109.12 (12)O4—S2—N2103.72 (9)
N1—S1—C1103.99 (10)O5—S2—C14108.61 (10)
C7—N1—S1122.29 (15)O4—S2—C14108.75 (11)
C7—N1—H1N119.6 (17)N2—S2—C14107.22 (10)
S1—N1—H1N115.2 (17)C20—N2—S2124.21 (14)
C2—C1—C6120.7 (3)C20—N2—H2N119.4 (17)
C2—C1—S1119.5 (2)S2—N2—H2N115.8 (17)
C6—C1—S1119.7 (2)C19—C14—C15121.1 (2)
C3—C2—C1119.4 (3)C19—C14—S2119.95 (17)
C3—C2—H2120.3C15—C14—S2118.89 (17)
C1—C2—H2120.3C16—C15—C14118.6 (2)
C2—C3—C4120.5 (3)C16—C15—H15120.7
C2—C3—H3119.7C14—C15—H15120.7
C4—C3—H3119.7C15—C16—C17120.2 (2)
C5—C4—C3120.1 (3)C15—C16—H16119.9
C5—C4—H4120.0C17—C16—H16119.9
C3—C4—H4120.0C18—C17—C16120.8 (3)
C4—C5—C6121.0 (3)C18—C17—H17119.6
C4—C5—H5119.5C16—C17—H17119.6
C6—C5—H5119.5C17—C18—C19120.1 (2)
C5—C6—C1118.3 (3)C17—C18—H18120.0
C5—C6—H6120.8C19—C18—H18120.0
C1—C6—H6120.8C18—C19—C14119.2 (2)
O3—C7—N1120.84 (19)C18—C19—H19120.4
O3—C7—C8124.36 (17)C14—C19—H19120.4
N1—C7—C8114.79 (17)O6—C20—N2121.96 (19)
C13—C8—C9117.3 (2)O6—C20—C21124.54 (19)
C13—C8—C7121.28 (19)N2—C20—C21113.47 (16)
C9—C8—C7121.41 (19)C22—C21—C26117.3 (2)
C10—C9—C8120.6 (2)C22—C21—C20123.27 (19)
C10—C9—Cl1A117.6 (2)C26—C21—C20119.43 (19)
C8—C9—Cl1A121.79 (18)C21—C22—C23121.1 (2)
C10—C9—H13B119.7C21—C22—Cl2121.50 (18)
C8—C9—H13B119.7C23—C22—Cl2117.3 (2)
C11—C10—C9119.9 (3)C24—C23—C22119.9 (3)
C11—C10—H10120.0C24—C23—H23120.0
C9—C10—H10120.0C22—C23—H23120.0
C10—C11—C12120.9 (3)C23—C24—C25120.3 (3)
C10—C11—H11119.6C23—C24—H24119.9
C12—C11—H11119.6C25—C24—H24119.9
C11—C12—C13119.0 (3)C24—C25—C26120.2 (3)
C11—C12—H12120.5C24—C25—H25119.9
C13—C12—H12120.5C26—C25—H25119.9
C12—C13—C8122.3 (2)C25—C26—C21121.2 (2)
C12—C13—Cl1B115.1 (3)C25—C26—H26119.4
C8—C13—Cl1B121.4 (2)C21—C26—H26119.4
O2—S1—N1—C759.3 (2)C7—C8—C13—Cl1B11.9 (3)
O1—S1—N1—C7−172.73 (19)O5—S2—N2—C2049.5 (2)
C1—S1—N1—C7−59.0 (2)O4—S2—N2—C20177.73 (18)
O2—S1—C1—C2166.94 (17)C14—S2—N2—C20−67.30 (19)
O1—S1—C1—C233.6 (2)O5—S2—C14—C19−16.8 (2)
N1—S1—C1—C2−75.60 (19)O4—S2—C14—C19−148.99 (18)
O2—S1—C1—C6−15.2 (2)N2—S2—C14—C1999.45 (18)
O1—S1—C1—C6−148.54 (18)O5—S2—C14—C15161.18 (17)
N1—S1—C1—C6102.27 (19)O4—S2—C14—C1529.0 (2)
C6—C1—C2—C3−0.4 (3)N2—S2—C14—C15−82.52 (18)
S1—C1—C2—C3177.40 (19)C19—C14—C15—C16−0.7 (3)
C1—C2—C3—C40.5 (4)S2—C14—C15—C16−178.68 (19)
C2—C3—C4—C5−0.2 (4)C14—C15—C16—C171.3 (4)
C3—C4—C5—C6−0.3 (5)C15—C16—C17—C18−0.9 (4)
C4—C5—C6—C10.3 (4)C16—C17—C18—C19−0.2 (4)
C2—C1—C6—C50.0 (3)C17—C18—C19—C140.8 (4)
S1—C1—C6—C5−177.8 (2)C15—C14—C19—C18−0.4 (3)
S1—N1—C7—O3−10.0 (3)S2—C14—C19—C18177.59 (19)
S1—N1—C7—C8169.48 (16)S2—N2—C20—O67.9 (3)
O3—C7—C8—C13−134.5 (2)S2—N2—C20—C21−170.30 (15)
N1—C7—C8—C1346.0 (3)O6—C20—C21—C2239.0 (3)
O3—C7—C8—C945.0 (3)N2—C20—C21—C22−142.8 (2)
N1—C7—C8—C9−134.4 (2)O6—C20—C21—C26−138.5 (2)
C13—C8—C9—C10−0.3 (3)N2—C20—C21—C2639.6 (3)
C7—C8—C9—C10−179.9 (2)C26—C21—C22—C23−1.2 (3)
C13—C8—C9—Cl1A−178.19 (16)C20—C21—C22—C23−178.8 (2)
C7—C8—C9—Cl1A2.2 (3)C26—C21—C22—Cl2−178.16 (17)
C8—C9—C10—C110.5 (4)C20—C21—C22—Cl24.3 (3)
Cl1A—C9—C10—C11178.5 (2)C21—C22—C23—C241.4 (4)
C9—C10—C11—C120.1 (4)Cl2—C22—C23—C24178.5 (2)
C10—C11—C12—C13−0.9 (4)C22—C23—C24—C25−0.5 (4)
C11—C12—C13—C81.1 (4)C23—C24—C25—C26−0.5 (4)
C11—C12—C13—Cl1B169.1 (3)C24—C25—C26—C210.7 (4)
C9—C8—C13—C12−0.5 (3)C22—C21—C26—C250.2 (3)
C7—C8—C13—C12179.1 (2)C20—C21—C26—C25177.9 (2)
C9—C8—C13—Cl1B−167.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.09 (2)2.922 (2)168 (2)
N2—H2N···O3ii0.82 (2)2.06 (2)2.883 (2)179 (3)

Symmetry codes: (i) −x+1, −y, −z; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5004).

References

  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o2516. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2750. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3156. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography