PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o361–o362.
Published online 2010 January 16. doi:  10.1107/S1600536810001224
PMCID: PMC2979749

4-(Methyl­sulfon­yl)piperazin-1-ium chloride

Abstract

In the title mol­ecular salt, C5H13N2O2S+·Cl, the complete cation is generated by crystallographic mirror symmetry, with both N atoms, the S atom and one C atom lying on the reflecting plane. The chloride ion also lies on the mirror plane. The piperazinium ring adopts a chair conformation and the N—S bond adopts an equatorial orientation. In the crystal structure, the component ions are linked into a three-dimensional framework by inter­molecular N—H(...)Cl and C—H(...)Cl hydrogen bonds.

Related literature

For medicinal background to piperazine derivatives, see: Dinsmore & Beshore (2002 [triangle]); Berkheij et al. (2005 [triangle]); Humle & Cherrier (1999 [triangle]). For related structures, see: Bart et al. (1978 [triangle]); Girisha et al. (2008 [triangle]); Homrighausen & Krause Bauer (2002 [triangle]); Jin et al. (2007 [triangle]); Kubo et al. (2007 [triangle]); Parkin et al. (2004 [triangle]); Shen et al. (2006 [triangle]), Wang et al. (2006 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o361-scheme1.jpg

Experimental

Crystal data

  • C5H13N2O2S+·Cl
  • M r = 200.68
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o361-efi2.jpg
  • a = 6.0231 (1) Å
  • b = 9.1097 (2) Å
  • c = 7.9852 (2) Å
  • β = 100.700 (1)°
  • V = 430.52 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.64 mm−1
  • T = 100 K
  • 0.36 × 0.32 × 0.05 mm

Data collection

  • Bruker APEX Duo CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.801, T max = 0.968
  • 10626 measured reflections
  • 2790 independent reflections
  • 2419 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.072
  • S = 1.10
  • 2790 reflections
  • 87 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001224/hb5306sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001224/hb5306Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks USM for the award of a USM Fellowship. CSC thanks University of Mysore for research facilities.

supplementary crystallographic information

Comment

Piperazines are among the most important building blocks in today's drug discovery. The piperazine nucleus is capable of binding to multiple receptors with high affinity and therefore piperazine has been classified as a privileged structure (Dinsmore & Beshore, 2002). They are found in biologically active compounds across a number of different therapeutic areas (Berkheij et al., 2005) such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (Humle & Cherrier, 1999). The piperazines are a broad class of chemical compounds, many with important pharmacological properties, which contain a core piperazine functional group. 1-(Methylsulfonyl)piperazine is an important intermediate in synthetic organic chemistry, mainly used as a pharmaceutical intermediate.

The crystal structures of trans-2,5-dimethylpiperazine dihydrochloride (Bart et al., 1978), 1-(3-chlorophenyl)-4-(3-chloropropyl)piperazinium chloride (Homrighausen & Krause Bauer, 2002), piperazine (Parkin et al., 2004), 2,2'-(piperazine-1,4-diium-1,4-diyl)diacetate dehydrate (Shen et al., 2006), 1,4-bis(chloroacetyl)piperazine (Wang et al., 2006), 1,4-bis(1-naphthylmethyl) piperazine (Kubo et al., 2007), 1,4-bis(4-chlorobenzo-yl)piperazine (Jin et al., 2007) and 1-benzhydryl-4-(4-chlorophenylsulfonyl) piperazine (Girisha et al., 2008) have been reported. In view of the importance of the title compound, this paper reports its crystal structure.

The asymmetric unit of the title compound contains one-half of a cation and half of a cloride anion (Fig. 1). The Cl1, S1, N1, N2, and C3 atoms are lying on a mirror plane. The piperazinium ring adopts a chair conformation with puckering amplitude Q = 0.5680 (7) Å, θ = 179.90 (7)°, [var phi] = 180 (7)° (Cremer & Pople, 1975). In the crystal structure (Fig. 2), the molecules are linked into a three-dimensional framework by intermolecular hydrogen bonds (Table 1).

Experimental

The title compound was obtained as a gift sample from R. L. Fine Chem., Bangalore, India. The compound was used without further purification. Colourless plates of (I) were obtained from slow evaporation of a methanol solution (m.p.: 489–492 K).

Refinement

All H atoms were located in a difference Fourier map and refined freely.

Figures

Fig. 1.
The molecular structure of (I) with 50% probability ellipsoids for the non-H atoms. Atoms with suffix A are generated by the symmetry operation (x, 1/2 - y, z).
Fig. 2.
The crystal packing of (I), viewed down the a axis, showing the hydrogen-bonded (dashed lines) three-dimensional framework.

Crystal data

C5H13N2O2S+·ClF(000) = 212
Mr = 200.68Dx = 1.548 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 4890 reflections
a = 6.0231 (1) Åθ = 3.4–40.1°
b = 9.1097 (2) ŵ = 0.64 mm1
c = 7.9852 (2) ÅT = 100 K
β = 100.700 (1)°Plate, colourless
V = 430.52 (2) Å30.36 × 0.32 × 0.05 mm
Z = 2

Data collection

Bruker APEX Duo CCD diffractometer2790 independent reflections
Radiation source: fine-focus sealed tube2419 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 40.1°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −10→10
Tmin = 0.801, Tmax = 0.968k = −14→16
10626 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.0335P)2 + 0.0922P] where P = (Fo2 + 2Fc2)/3
2790 reflections(Δ/σ)max = 0.001
87 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.30674 (3)0.25000.93448 (3)0.01195 (5)
S10.69091 (3)0.25000.56598 (2)0.00951 (5)
N10.82854 (12)0.25000.03611 (9)0.01007 (11)
N20.79320 (12)0.25000.38830 (9)0.00974 (11)
O10.75935 (9)0.11396 (6)0.65235 (6)0.01498 (9)
C10.87784 (10)0.11522 (7)0.14202 (8)0.01165 (9)
C20.74465 (10)0.11465 (7)0.28537 (8)0.01168 (9)
C30.39411 (15)0.25000.50705 (12)0.01332 (13)
H1A0.8351 (18)0.0315 (13)0.0719 (14)0.012 (2)*
H1B1.040 (2)0.1186 (13)0.1845 (16)0.016 (3)*
H2A0.583 (2)0.1017 (14)0.2371 (15)0.018 (3)*
H2B0.789 (2)0.0335 (16)0.3554 (17)0.027 (3)*
H3A0.331 (3)0.25000.606 (2)0.019 (4)*
H3B0.350 (2)0.3381 (15)0.4460 (16)0.025 (3)*
H1N10.914 (3)0.2500−0.048 (2)0.019 (4)*
H2N10.677 (3)0.2500−0.017 (2)0.021 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.00886 (7)0.01261 (8)0.01485 (9)0.0000.00346 (6)0.000
S10.01110 (8)0.01033 (8)0.00696 (8)0.0000.00128 (6)0.000
N10.0098 (2)0.0115 (3)0.0095 (3)0.0000.00316 (19)0.000
N20.0126 (2)0.0084 (2)0.0087 (2)0.0000.0032 (2)0.000
O10.01874 (19)0.01499 (19)0.01109 (18)0.00356 (16)0.00245 (15)0.00480 (15)
C10.0148 (2)0.00900 (19)0.0122 (2)0.00097 (17)0.00547 (17)−0.00041 (17)
C20.0162 (2)0.0083 (2)0.0117 (2)−0.00109 (16)0.00571 (17)−0.00060 (16)
C30.0115 (3)0.0166 (3)0.0121 (3)0.0000.0027 (2)0.000

Geometric parameters (Å, °)

S1—O1i1.4408 (5)N2—C2i1.4806 (7)
S1—O11.4408 (5)C1—C21.5148 (8)
S1—N21.6484 (7)C1—H1A0.953 (11)
S1—C31.7621 (9)C1—H1B0.976 (12)
N1—C11.4892 (7)C2—H2A0.983 (13)
N1—C1i1.4892 (7)C2—H2B0.935 (14)
N1—H1N10.920 (17)C3—H3A0.941 (18)
N1—H2N10.933 (19)C3—H3B0.951 (14)
N2—C21.4806 (7)
O1i—S1—O1118.67 (4)N1—C1—C2110.75 (5)
O1i—S1—N2107.01 (2)N1—C1—H1A108.8 (7)
O1—S1—N2107.01 (2)C2—C1—H1A108.5 (6)
O1i—S1—C3108.28 (3)N1—C1—H1B104.6 (7)
O1—S1—C3108.29 (3)C2—C1—H1B112.1 (7)
N2—S1—C3107.03 (4)H1A—C1—H1B112.0 (9)
C1—N1—C1i111.07 (7)N2—C2—C1109.81 (5)
C1—N1—H1N1109.7 (5)N2—C2—H2A113.4 (7)
C1i—N1—H1N1109.7 (5)C1—C2—H2A109.1 (7)
C1—N1—H2N1109.5 (5)N2—C2—H2B108.7 (8)
C1i—N1—H2N1109.5 (5)C1—C2—H2B108.7 (7)
H1N1—N1—H2N1107.3 (15)H2A—C2—H2B107.1 (10)
C2—N2—C2i112.77 (7)S1—C3—H3A108.9 (11)
C2—N2—S1114.27 (4)S1—C3—H3B108.1 (8)
C2i—N2—S1114.27 (4)H3A—C3—H3B108.3 (9)
O1i—S1—N2—C2178.10 (5)C3—S1—N2—C2i66.00 (5)
O1—S1—N2—C249.91 (6)C1i—N1—C1—C256.95 (8)
C3—S1—N2—C2−65.99 (5)C2i—N2—C2—C156.73 (8)
O1i—S1—N2—C2i−49.91 (6)S1—N2—C2—C1−170.56 (4)
O1—S1—N2—C2i−178.10 (5)N1—C1—C2—N2−55.89 (7)

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl1ii0.92 (2)2.40 (2)3.1341 (8)137 (1)
N1—H2N1···Cl1iii0.93 (2)2.19 (2)3.0966 (8)164 (1)
C1—H1A···Cl1iv0.953 (12)2.700 (12)3.5251 (6)145.2 (9)
C3—H3A···Cl10.94 (2)2.65 (2)3.5487 (10)160 (2)

Symmetry codes: (ii) x+1, y, z−1; (iii) x, y, z−1; (iv) −x+1, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5306).

References

  • Bart, J. C. J., Bassi, I. W. & Scordamaglia, R. (1978). Acta Cryst. B34, 2760–2764.
  • Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Heimstra, H., Bakker, W. I. I., van den Hoogen Band, A. & van Maarseveen, J. H. (2005). Tetrahedron, 46, 2369–2371.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dinsmore, C. J. & Beshore, D. C. (2002). Tetrahedron, 58, 3297–3312.
  • Girisha, H. R., Naveen, S., Vinaya, K., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2008). Acta Cryst. E64, o358. [PMC free article] [PubMed]
  • Homrighausen, C. L. & Krause Bauer, J. A. (2002). Acta Cryst. E58, o1395–o1396.
  • Humle, C. & Cherrier, M. P. (1999). Tetrahedron Lett.40, 5295–5299.
  • Jin, H.-M., Li, P.-F., Li, C.-Y. & Liu, B. (2007). Acta Cryst. E63, o3689.
  • Kubo, K., Yamamoto, E., Hayakawa, A., Sakurai, T. & Mori, A. (2007). Acta Cryst. E63, o1347–o1348.
  • Parkin, A., Oswald, I. D. H. & Parsons, S. (2004). Acta Cryst. B60, 219–227. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shen, L., Wang, F.-W., Cheng, A.-B. & Yang, S. (2006). Acta Cryst. E62, o2242–o2244.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, J., Zeng, T., Li, M.-L., Duan, E.-H. & Li, J.-S. (2006). Acta Cryst. E62, o2912–o2913.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography