PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o463.
Published online 2010 January 27. doi:  10.1107/S1600536810002151
PMCID: PMC2979744

cis-N-(2-Hydroxy­cyclo­hexyl)-p-toluene­sulfonamide

Abstract

There are two symmetry-independent mol­ecules in the asymmetric unit of the title compound, C13H19NO3S. The cyclo­hexane rings in the two mol­ecules adopt chair configurations. The hydr­oxy and amino groups on the cyclo­hexane ring assume axial and equatorial orientations, respectively, with respect to the plane of the ring. The crystal structure is stabilized by two inter­molecular N—H(...)O and O—H(...)O hydrogen bonds from the two symmetry-independent mol­ecules.

Related literature

For related structures of β-amino alcohols, see: Bergmeier (2000 [triangle]); Krzemiński & Wojtczak (2005 [triangle]). For related structures of tosyl­amino compounds, see: Coote et al. (2008 [triangle]); Liu et al. (2005 [triangle]); Chinnakali et al. (2007 [triangle]); Nan & Xing (2006 [triangle]). For the synthesis of the title compound, see: Naiker et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o463-scheme1.jpg

Experimental

Crystal data

  • C13H19NO3S
  • M r = 269.35
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o463-efi1.jpg
  • a = 6.3031 (1) Å
  • b = 12.8355 (2) Å
  • c = 17.5367 (3) Å
  • α = 106.645 (1)°
  • β = 93.971 (1)°
  • γ = 100.047 (1)°
  • V = 1327.75 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 173 K
  • 0.51 × 0.31 × 0.25 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • 18458 measured reflections
  • 6423 independent reflections
  • 4837 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.111
  • S = 1.07
  • 6423 reflections
  • 343 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002151/lx2131sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002151/lx2131Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We wish to thank Dr Manuel Fernandes (University of the Witwatersrand) for the data collection, and the NRF, THRIP and the University of KwaZulu-Natal for financial support.

supplementary crystallographic information

Comment

Molecules containing a β-amino alcohol system have been used as precursors for the synthesis of chiral ligands, aziridine and biologically active compounds (Bergmeier, 2000; Krzemiński & Wojtczak, 2005). As a part of study on this family of compounds, we report the crystal structure of the title compound (l) (Fig. 1).

The geometry of the benzenesulfonamide unit in (I) agrees with that for related structures (Chinnakali et al. 2007; Nan & Xing, 2006). The cyclohexane rings in the two molecules adopt the chair configuration. The hydroxy and amino groups on the cyclohexane ring respectively assume axial and equatorial orientations with respect to the plane of the ring. The crystal packing (Fig. 2) is stabilized by intermolecular N—H···O and O—H···O hydrogen bonds from the two neighbouring symmetry-independent molecules (Table 1).

Experimental

The synthesis of the title compound was carried out using a modified literature method (Naiker et al. 2008) using a catalytic process. To a nitrogen saturated Schlenk tube, toluene (6 ml), water (172 µl) chloroamine-T (0.21 g, 0.956 mmol), cyclohexene (0.478 mmol) and catalyst (0.03 g) were added in that order. After the complete conversion of the starting material the catalyst was gravity filtered. The reaction mixture was washed with 15 ml of sodium sulfite (1 g in 15 ml of de-ionized water), followed by 15 ml of ethyl acetate. Then the aqueous layer was separated from the organic layer and washed further with 3 × 15 ml of ethyl acetate. The solvent was removed in vacuo, and the crude product was purified using preparative high pressure liquid chromatography to yield the title compound as a white solid. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetonitrile/water (1:1 v/v) at room temperature. (mp; 414–416 K) Spectroscopic analysis: 13C NMR (400 MHz, CDCl3, δ, p.p.m): = 19.76 (s, 1 C), 21.54 (s, 2 C), 27.98 (s, 1 C), 31.46(s, 1 C), 55.10 (s, 1 C), 68.76 (s, 1 C), 126.97 (s, 2 C), 129.74 (s, 2 C), 137.98(s, 1 C), 143.39 (s, 143.39).. MS m/z –[fragment]–(%): 291.8 (M + Na+) calculated = 291.8 for C13H19NO3SNa+.

FT–IR (cm-1): = 3414(m), (OH), 3137(m), (NH), 2938(w), 2849(w), 1598(m), (ar), 1059(m), (S=O).

Refinement

All H-atoms were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) for NH, and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O) for OH.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
N—H···O and O—H···O hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x - 1, y - 1, z; (ii) x + 1, y + 1, z; (iii) x, y - 1, ...

Crystal data

C13H19NO3SZ = 4
Mr = 269.35F(000) = 576
Triclinic, P1Dx = 1.347 Mg m3
Hall symbol: -P 1Melting point = 414–416 K
a = 6.3031 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.8355 (2) ÅCell parameters from 6946 reflections
c = 17.5367 (3) Åθ = 2.4–28.3°
α = 106.645 (1)°µ = 0.24 mm1
β = 93.971 (1)°T = 173 K
γ = 100.047 (1)°Block, colourless
V = 1327.75 (4) Å30.51 × 0.31 × 0.25 mm

Data collection

Bruker APEXII CCD diffractometer4837 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
graphiteθmax = 28.0°, θmin = 1.2°
[var phi] and ω scansh = −8→8
18458 measured reflectionsk = −16→16
6423 independent reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0582P)2 + 0.0739P] where P = (Fo2 + 2Fc2)/3
6423 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3149 (2)0.39725 (12)0.35318 (8)0.0230 (3)
H10.41550.46750.38600.028*
C20.4327 (2)0.30139 (12)0.34741 (9)0.0227 (3)
H20.57060.31560.32360.027*
C30.4842 (3)0.28788 (14)0.42986 (9)0.0303 (4)
H3A0.58960.35430.46390.036*
H3B0.55220.22250.42400.036*
C40.2795 (3)0.27272 (15)0.47095 (10)0.0344 (4)
H4A0.18000.20220.43990.041*
H4B0.31950.26840.52540.041*
C50.1644 (3)0.36911 (14)0.47692 (9)0.0337 (4)
H5A0.25830.43840.51270.040*
H5B0.02850.35570.50090.040*
C60.1107 (3)0.38351 (13)0.39456 (9)0.0266 (3)
H6A0.00340.31780.36070.032*
H6B0.04490.44970.40100.032*
C70.3445 (2)0.63056 (12)0.29981 (8)0.0212 (3)
C80.5061 (2)0.72537 (12)0.31511 (9)0.0238 (3)
H80.64210.72040.29560.029*
C90.4672 (3)0.82718 (12)0.35906 (9)0.0282 (3)
H90.57750.89200.36930.034*
C100.2692 (3)0.83612 (13)0.38840 (9)0.0290 (4)
C110.1103 (3)0.74045 (14)0.37164 (10)0.0310 (4)
H11−0.02570.74540.39110.037*
C120.1439 (3)0.63787 (13)0.32735 (9)0.0284 (3)
H120.03200.57350.31590.034*
C130.2270 (4)0.94682 (16)0.43611 (11)0.0459 (5)
H13A0.09000.95820.41300.069*
H13B0.34601.00610.43450.069*
H13C0.21730.94800.49190.069*
N10.2596 (2)0.40722 (10)0.27298 (8)0.0243 (3)
O10.30664 (19)0.48034 (9)0.15979 (6)0.0319 (3)
O20.62179 (17)0.50634 (9)0.26023 (7)0.0322 (3)
O30.29042 (18)0.20373 (9)0.29512 (6)0.0262 (2)
S10.39239 (6)0.50145 (3)0.24179 (2)0.02302 (10)
H1N0.134 (3)0.3817 (15)0.2496 (11)0.039 (5)*
H3O0.364 (3)0.1556 (18)0.2813 (12)0.050 (6)*
C140.7984 (3)1.13220 (12)0.14293 (9)0.0260 (3)
H140.69601.06210.11090.031*
C150.6821 (2)1.22875 (12)0.14932 (8)0.0221 (3)
H150.54351.21420.17260.026*
C160.6321 (3)1.24306 (13)0.06696 (9)0.0275 (3)
H16A0.56491.30870.07290.033*
H16B0.52671.17690.03250.033*
C170.8384 (3)1.25814 (14)0.02681 (9)0.0311 (4)
H17A0.80131.2657−0.02690.037*
H17B0.94051.32680.05940.037*
C180.9460 (3)1.15881 (15)0.01851 (10)0.0382 (4)
H18A1.08031.1699−0.00680.046*
H18B0.84681.0909−0.01670.046*
C191.0017 (3)1.14389 (14)0.10043 (10)0.0322 (4)
H19A1.11151.20880.13390.039*
H19B1.06471.07680.09340.039*
C200.7614 (2)0.89890 (11)0.20252 (8)0.0214 (3)
C210.5911 (3)0.82342 (12)0.15054 (9)0.0253 (3)
H210.45700.84450.14090.030*
C220.6186 (3)0.71642 (13)0.11252 (9)0.0290 (3)
H220.50210.66430.07690.035*
C230.8145 (3)0.68457 (12)0.12593 (9)0.0276 (3)
C240.9834 (3)0.76236 (13)0.17751 (9)0.0276 (3)
H241.11820.74180.18670.033*
C250.9594 (3)0.86956 (13)0.21587 (9)0.0260 (3)
H251.07670.92210.25080.031*
C260.8384 (3)0.56743 (14)0.08535 (11)0.0414 (4)
H26A0.72300.51510.09760.062*
H26B0.98020.55690.10480.062*
H26C0.82750.55410.02720.062*
N20.8567 (2)1.12308 (11)0.22299 (8)0.0285 (3)
O40.81390 (19)1.05591 (9)0.33850 (6)0.0326 (3)
O50.49416 (18)1.02921 (9)0.23866 (7)0.0345 (3)
O60.82296 (18)1.32622 (9)0.20231 (6)0.0246 (2)
S20.72262 (6)1.03181 (3)0.25663 (2)0.02444 (11)
H2N0.981 (3)1.1520 (16)0.2453 (11)0.040 (6)*
H6O0.751 (4)1.3754 (19)0.2141 (13)0.061 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0245 (8)0.0189 (7)0.0237 (7)0.0036 (6)−0.0012 (6)0.0050 (6)
C20.0177 (7)0.0233 (7)0.0270 (8)0.0037 (6)0.0014 (6)0.0080 (6)
C30.0286 (9)0.0345 (9)0.0307 (8)0.0111 (7)−0.0005 (7)0.0128 (7)
C40.0389 (10)0.0442 (10)0.0277 (8)0.0158 (8)0.0068 (7)0.0177 (7)
C50.0375 (10)0.0382 (9)0.0257 (8)0.0127 (8)0.0057 (7)0.0068 (7)
C60.0293 (9)0.0256 (8)0.0260 (8)0.0117 (7)0.0049 (6)0.0054 (6)
C70.0221 (8)0.0212 (7)0.0237 (7)0.0071 (6)0.0046 (6)0.0099 (6)
C80.0237 (8)0.0256 (8)0.0240 (7)0.0051 (6)0.0049 (6)0.0099 (6)
C90.0337 (9)0.0227 (8)0.0275 (8)0.0039 (7)0.0026 (7)0.0080 (6)
C100.0394 (10)0.0282 (8)0.0226 (8)0.0152 (7)0.0027 (7)0.0080 (6)
C110.0286 (9)0.0383 (9)0.0344 (9)0.0170 (7)0.0114 (7)0.0164 (7)
C120.0235 (8)0.0280 (8)0.0382 (9)0.0074 (6)0.0069 (7)0.0153 (7)
C130.0564 (13)0.0389 (10)0.0413 (11)0.0240 (9)0.0051 (9)0.0021 (8)
N10.0210 (7)0.0224 (6)0.0285 (7)−0.0005 (5)−0.0031 (5)0.0106 (5)
O10.0401 (7)0.0300 (6)0.0254 (6)0.0060 (5)0.0061 (5)0.0087 (5)
O20.0210 (6)0.0244 (6)0.0502 (7)0.0075 (5)0.0079 (5)0.0073 (5)
O30.0234 (6)0.0204 (5)0.0322 (6)0.0070 (5)0.0023 (5)0.0026 (4)
S10.0216 (2)0.01999 (19)0.0284 (2)0.00532 (14)0.00508 (15)0.00776 (15)
C140.0291 (8)0.0184 (7)0.0274 (8)0.0021 (6)−0.0020 (6)0.0051 (6)
C150.0173 (7)0.0232 (7)0.0245 (7)0.0023 (6)0.0009 (6)0.0069 (6)
C160.0258 (8)0.0306 (8)0.0256 (8)0.0063 (7)−0.0013 (6)0.0084 (6)
C170.0329 (9)0.0383 (9)0.0236 (8)0.0084 (7)0.0055 (6)0.0106 (7)
C180.0422 (11)0.0415 (10)0.0282 (9)0.0140 (8)0.0095 (8)0.0022 (7)
C190.0356 (10)0.0278 (8)0.0343 (9)0.0167 (7)0.0075 (7)0.0045 (7)
C200.0232 (8)0.0187 (7)0.0243 (7)0.0055 (6)0.0056 (6)0.0085 (6)
C210.0230 (8)0.0252 (8)0.0289 (8)0.0071 (6)0.0026 (6)0.0090 (6)
C220.0328 (9)0.0240 (8)0.0274 (8)0.0046 (7)0.0011 (7)0.0048 (6)
C230.0380 (9)0.0250 (8)0.0261 (8)0.0130 (7)0.0150 (7)0.0112 (6)
C240.0256 (8)0.0324 (8)0.0333 (8)0.0140 (7)0.0107 (6)0.0167 (7)
C250.0219 (8)0.0279 (8)0.0302 (8)0.0050 (6)0.0033 (6)0.0119 (6)
C260.0559 (13)0.0276 (9)0.0450 (11)0.0177 (8)0.0194 (9)0.0092 (8)
N20.0258 (8)0.0223 (7)0.0366 (8)−0.0015 (6)−0.0052 (6)0.0133 (6)
O40.0412 (7)0.0254 (6)0.0288 (6)0.0038 (5)0.0057 (5)0.0059 (5)
O50.0235 (6)0.0230 (6)0.0539 (8)0.0081 (5)0.0060 (5)0.0047 (5)
O60.0234 (6)0.0209 (5)0.0268 (6)0.0066 (5)0.0010 (4)0.0023 (4)
S20.0242 (2)0.01775 (18)0.0308 (2)0.00465 (15)0.00403 (15)0.00618 (15)

Geometric parameters (Å, °)

C1—N11.472 (2)C14—N21.4690 (19)
C1—C21.528 (2)C14—C151.528 (2)
C1—C61.529 (2)C14—C191.532 (2)
C1—H11.0000C14—H141.0000
C2—O31.4325 (17)C15—O61.4316 (17)
C2—C31.525 (2)C15—C161.526 (2)
C2—H21.0000C15—H151.0000
C3—C41.531 (2)C16—C171.530 (2)
C3—H3A0.9900C16—H16A0.9900
C3—H3B0.9900C16—H16B0.9900
C4—C51.522 (2)C17—C181.522 (2)
C4—H4A0.9900C17—H17A0.9900
C4—H4B0.9900C17—H17B0.9900
C5—C61.530 (2)C18—C191.528 (2)
C5—H5A0.9900C18—H18A0.9900
C5—H5B0.9900C18—H18B0.9900
C6—H6A0.9900C19—H19A0.9900
C6—H6B0.9900C19—H19B0.9900
C7—C81.390 (2)C20—C211.385 (2)
C7—C121.393 (2)C20—C251.389 (2)
C7—S11.7674 (14)C20—S21.7665 (14)
C8—C91.387 (2)C21—C221.391 (2)
C8—H80.9500C21—H210.9500
C9—C101.393 (2)C22—C231.392 (2)
C9—H90.9500C22—H220.9500
C10—C111.386 (2)C23—C241.388 (2)
C10—C131.507 (2)C23—C261.507 (2)
C11—C121.384 (2)C24—C251.387 (2)
C11—H110.9500C24—H240.9500
C12—H120.9500C25—H250.9500
C13—H13A0.9800C26—H26A0.9800
C13—H13B0.9800C26—H26B0.9800
C13—H13C0.9800C26—H26C0.9800
N1—S11.5975 (13)N2—S21.5982 (13)
N1—H1N0.83 (2)N2—H2N0.82 (2)
O1—S11.4322 (11)O4—S21.4343 (12)
O2—S11.4461 (11)O5—S21.4452 (12)
O3—H3O0.83 (2)O6—H6O0.83 (2)
N1—C1—C2110.49 (11)N2—C14—C15110.28 (12)
N1—C1—C6110.35 (12)N2—C14—C19109.93 (13)
C2—C1—C6111.65 (12)C15—C14—C19112.15 (12)
N1—C1—H1108.1N2—C14—H14108.1
C2—C1—H1108.1C15—C14—H14108.1
C6—C1—H1108.1C19—C14—H14108.1
O3—C2—C3110.68 (12)O6—C15—C16110.75 (12)
O3—C2—C1106.45 (11)O6—C15—C14107.06 (11)
C3—C2—C1110.94 (12)C16—C15—C14110.71 (12)
O3—C2—H2109.6O6—C15—H15109.4
C3—C2—H2109.6C16—C15—H15109.4
C1—C2—H2109.6C14—C15—H15109.4
C2—C3—C4111.59 (13)C15—C16—C17111.19 (13)
C2—C3—H3A109.3C15—C16—H16A109.4
C4—C3—H3A109.3C17—C16—H16A109.4
C2—C3—H3B109.3C15—C16—H16B109.4
C4—C3—H3B109.3C17—C16—H16B109.4
H3A—C3—H3B108.0H16A—C16—H16B108.0
C5—C4—C3110.62 (14)C18—C17—C16110.11 (14)
C5—C4—H4A109.5C18—C17—H17A109.6
C3—C4—H4A109.5C16—C17—H17A109.6
C5—C4—H4B109.5C18—C17—H17B109.6
C3—C4—H4B109.5C16—C17—H17B109.6
H4A—C4—H4B108.1H17A—C17—H17B108.2
C4—C5—C6111.54 (13)C17—C18—C19110.83 (13)
C4—C5—H5A109.3C17—C18—H18A109.5
C6—C5—H5A109.3C19—C18—H18A109.5
C4—C5—H5B109.3C17—C18—H18B109.5
C6—C5—H5B109.3C19—C18—H18B109.5
H5A—C5—H5B108.0H18A—C18—H18B108.1
C1—C6—C5110.98 (13)C18—C19—C14110.71 (14)
C1—C6—H6A109.4C18—C19—H19A109.5
C5—C6—H6A109.4C14—C19—H19A109.5
C1—C6—H6B109.4C18—C19—H19B109.5
C5—C6—H6B109.4C14—C19—H19B109.5
H6A—C6—H6B108.0H19A—C19—H19B108.1
C8—C7—C12120.34 (14)C21—C20—C25120.81 (14)
C8—C7—S1119.33 (11)C21—C20—S2119.75 (11)
C12—C7—S1120.29 (11)C25—C20—S2119.36 (11)
C9—C8—C7119.46 (14)C20—C21—C22119.29 (14)
C9—C8—H8120.3C20—C21—H21120.4
C7—C8—H8120.3C22—C21—H21120.4
C8—C9—C10121.16 (15)C21—C22—C23120.93 (15)
C8—C9—H9119.4C21—C22—H22119.5
C10—C9—H9119.4C23—C22—H22119.5
C11—C10—C9118.17 (14)C24—C23—C22118.55 (14)
C11—C10—C13120.69 (16)C24—C23—C26121.60 (15)
C9—C10—C13121.13 (16)C22—C23—C26119.84 (16)
C12—C11—C10121.93 (15)C25—C24—C23121.41 (14)
C12—C11—H11119.0C25—C24—H24119.3
C10—C11—H11119.0C23—C24—H24119.3
C11—C12—C7118.92 (15)C24—C25—C20119.00 (14)
C11—C12—H12120.5C24—C25—H25120.5
C7—C12—H12120.5C20—C25—H25120.5
C10—C13—H13A109.5C23—C26—H26A109.5
C10—C13—H13B109.5C23—C26—H26B109.5
H13A—C13—H13B109.5H26A—C26—H26B109.5
C10—C13—H13C109.5C23—C26—H26C109.5
H13A—C13—H13C109.5H26A—C26—H26C109.5
H13B—C13—H13C109.5H26B—C26—H26C109.5
C1—N1—S1122.50 (10)C14—N2—S2122.76 (11)
C1—N1—H1N119.7 (13)C14—N2—H2N117.8 (13)
S1—N1—H1N113.8 (13)S2—N2—H2N116.7 (13)
C2—O3—H3O107.3 (15)C15—O6—H6O107.3 (16)
O1—S1—O2118.31 (7)O4—S2—O5119.25 (7)
O1—S1—N1107.26 (7)O4—S2—N2106.51 (7)
O2—S1—N1108.38 (7)O5—S2—N2107.95 (7)
O1—S1—C7109.32 (7)O4—S2—C20108.22 (7)
O2—S1—C7105.55 (7)O5—S2—C20105.34 (7)
N1—S1—C7107.60 (7)N2—S2—C20109.34 (7)
N1—C1—C2—O3−57.65 (14)N2—C14—C15—O656.00 (15)
C6—C1—C2—O365.57 (15)C19—C14—C15—O6−66.87 (15)
N1—C1—C2—C3−178.14 (12)N2—C14—C15—C16176.81 (12)
C6—C1—C2—C3−54.92 (16)C19—C14—C15—C1653.94 (16)
O3—C2—C3—C4−62.41 (17)O6—C15—C16—C1762.91 (16)
C1—C2—C3—C455.53 (17)C14—C15—C16—C17−55.68 (16)
C2—C3—C4—C5−56.05 (19)C15—C16—C17—C1858.13 (18)
C3—C4—C5—C655.88 (19)C16—C17—C18—C19−58.33 (19)
N1—C1—C6—C5178.09 (12)C17—C18—C19—C1456.40 (19)
C2—C1—C6—C554.80 (16)N2—C14—C19—C18−177.42 (13)
C4—C5—C6—C1−55.44 (18)C15—C14—C19—C18−54.35 (17)
C12—C7—C8—C90.9 (2)C25—C20—C21—C221.2 (2)
S1—C7—C8—C9178.53 (11)S2—C20—C21—C22−175.50 (11)
C7—C8—C9—C100.2 (2)C20—C21—C22—C23−0.1 (2)
C8—C9—C10—C11−0.8 (2)C21—C22—C23—C24−0.7 (2)
C8—C9—C10—C13−179.95 (15)C21—C22—C23—C26178.69 (14)
C9—C10—C11—C120.2 (2)C22—C23—C24—C250.6 (2)
C13—C10—C11—C12179.39 (15)C26—C23—C24—C25−178.82 (14)
C10—C11—C12—C70.9 (2)C23—C24—C25—C200.4 (2)
C8—C7—C12—C11−1.5 (2)C21—C20—C25—C24−1.3 (2)
S1—C7—C12—C11−179.05 (12)S2—C20—C25—C24175.38 (11)
C2—C1—N1—S1−103.58 (13)C15—C14—N2—S2102.29 (14)
C6—C1—N1—S1132.45 (12)C19—C14—N2—S2−133.55 (12)
C1—N1—S1—O1175.08 (11)C14—N2—S2—O4−174.30 (12)
C1—N1—S1—O246.28 (13)C14—N2—S2—O5−45.13 (14)
C1—N1—S1—C7−67.40 (13)C14—N2—S2—C2068.98 (14)
C8—C7—S1—O1−95.15 (13)C21—C20—S2—O4134.13 (12)
C12—C7—S1—O182.45 (13)C25—C20—S2—O4−42.57 (13)
C8—C7—S1—O233.11 (14)C21—C20—S2—O55.55 (14)
C12—C7—S1—O2−149.29 (12)C25—C20—S2—O5−171.15 (11)
C8—C7—S1—N1148.68 (12)C21—C20—S2—N2−110.23 (12)
C12—C7—S1—N1−33.72 (14)C25—C20—S2—N273.07 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O6i0.83 (2)2.00 (2)2.8255 (17)175.0 (18)
N2—H2N···O3ii0.82 (2)2.00 (2)2.8155 (18)173.1 (19)
O3—H3O···O5iii0.83 (2)1.93 (2)2.7489 (15)171 (2)
O6—H6O···O2iv0.83 (2)1.98 (2)2.8001 (15)169 (2)

Symmetry codes: (i) x−1, y−1, z; (ii) x+1, y+1, z; (iii) x, y−1, z; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2131).

References

  • Bergmeier, S. (2000). Tetrahedron, 56, 2561–2576.
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chinnakali, K., Poornachandran, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o1030–o1031.
  • Coote, S. C., O’Brien, P. & Whitwood, A. C. (2008). Org. Biomol. Chem.6, 4299–4314. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Krzemiński, M. P. & Wojtczak, A. (2005). Tetrahedron Lett.46, 8299–8302.
  • Liu, Z., Fan, Y., Li, R., Zhou, B. & Wu, L. (2005). Tetrahedron Lett.46, 1023–1025.
  • Naiker, T., Datye, A. & Friedrich, H. B. (2008). Appl. Catal. A, 350, 96–102.
  • Nan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978–o1979.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography