PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o397.
Published online 2010 January 20. doi:  10.1107/S1600536810001601
PMCID: PMC2979740

Ethyl 2-(3-acetyl-6-methyl-2-oxo-2H-pyran-4-yl­oxy)acetate

Abstract

The title compound, C12H14O6, features a roughly planar mol­ecule (r.m.s. deviation for all non-H atoms = 0.287 Å). In the crystal, the mol­ecules are held together by C—H(...)O hydrogen bonds.

Related literature

For the use of dehydro­acetic acid as a starting material in the synthesis of heterocyclic ring systems, see: Prakash et al. (2004 [triangle]), and of biologically important mol­ecules such as coumarins, see: Hernandez-Galan et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o397-scheme1.jpg

Experimental

Crystal data

  • C12H14O6
  • M r = 254.23
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o397-efi1.jpg
  • a = 7.8258 (10) Å
  • b = 8.2722 (11) Å
  • c = 10.0838 (13) Å
  • α = 77.374 (7)°
  • β = 77.759 (6)°
  • γ = 88.857 (7)°
  • V = 622.28 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 298 K
  • 0.72 × 0.13 × 0.11 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.925, T max = 0.988
  • 14279 measured reflections
  • 3039 independent reflections
  • 2330 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.159
  • S = 1.04
  • 3039 reflections
  • 166 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT-Plus (Bruker, 2008 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810001601/bt5170sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001601/bt5170Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Organization for the Prohibition of Chemical Weapons for financial support.

supplementary crystallographic information

Comment

3-Acetyl-4-hydroxy-6-methyl-2-oxo-2H-pyran (dehydroacetic acid) is a versatile starting material for the synthesis of a wide variety of heterocyclic ring systems (Prakash et al., 2004) and biologically important molecules like coumarins (Hernandez-Galan et al., 1993).

Experimental

The dehydroacetic acid (500 mg, 3 mmol) was treated with ethylbromoacetate (2 g, 12 mmol) in acetone in the presence of K2CO3 (1.6 g, 12 mmol). The reaction mixture was refluxed for 3 h monitored with TLC at regular intervals of 30 minutes. The reaction was quenched by addition of 1 N HCl (10 ml) and the aqueous layer was extracted with ethyl acetate three times. The combined organic layers were concentrated under reduced pressure. The crude residue was dissolved in hot ethanol. The slow evaporation of ethanol yielded colorless needle-like crystals (90%, 680 mg).

Refinement

The H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.96 Å and with Uiso = 1.2Ueq(C) for CH and CH2 and Uiso = 1.5Ueq(C) for CH3 groups.

Figures

Fig. 1.
Crystal Structure of Ethyl 2-(3-acetyl-6-methyl-2-oxo-2H-pyran-4-yloxy) acetate (50% ellipsoids).

Crystal data

C12H14O6Z = 2
Mr = 254.23F(000) = 268
Triclinic, P1Dx = 1.357 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8258 (10) ÅCell parameters from 6664 reflections
b = 8.2722 (11) Åθ = 2.1–28.3°
c = 10.0838 (13) ŵ = 0.11 mm1
α = 77.374 (7)°T = 298 K
β = 77.759 (6)°Rectangular prism, clear colourless
γ = 88.857 (7)°0.72 × 0.13 × 0.11 mm
V = 622.28 (14) Å3

Data collection

Bruker SMART APEXII diffractometer3039 independent reflections
Radiation source: fine-focus sealed tube2330 reflections with I > 2σ(I)
graphiteRint = 0.036
Detector resolution: 83.33 pixels mm-1θmax = 28.3°, θmin = 2.1°
[var phi] scans and ω scans with κ offsetsh = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2001)k = −11→10
Tmin = 0.925, Tmax = 0.988l = −13→13
14279 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0773P)2 + 0.1512P] where P = (Fo2 + 2Fc2)/3
3039 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.57091 (13)0.60585 (14)1.11130 (11)0.0528 (3)
C20.44227 (18)0.6846 (2)1.04378 (17)0.0494 (4)
C30.50118 (17)0.81700 (18)0.92489 (15)0.0438 (3)
C40.67613 (17)0.86621 (18)0.89085 (15)0.0419 (3)
C50.79728 (17)0.78287 (18)0.96663 (16)0.0445 (3)
H50.91420.81750.94330.053*
C60.74139 (18)0.65385 (19)1.07210 (15)0.0453 (3)
C6A0.8505 (2)0.5494 (2)1.15859 (19)0.0626 (5)
H6A10.97080.58511.12480.094*
H6A20.83790.43581.15370.094*
H6A30.81340.55971.25340.094*
C3A0.36798 (19)0.8935 (2)0.84701 (18)0.0525 (4)
C3B0.4174 (3)0.9705 (5)0.6972 (3)0.1171 (12)
H3B10.31990.96300.65480.176*
H3B20.51450.91380.65420.176*
H3B30.44991.08490.68540.176*
O3A0.21609 (15)0.8898 (2)0.90547 (17)0.0803 (5)
O40.72493 (13)0.99457 (14)0.78399 (13)0.0576 (3)
C1A0.9346 (2)1.1577 (2)0.60243 (17)0.0525 (4)
C2A0.8981 (2)1.0641 (2)0.74992 (18)0.0562 (4)
H2A10.98160.97680.76220.067*
H2A20.90881.13780.81060.067*
O20.29702 (14)0.62711 (18)1.09368 (15)0.0704 (4)
O1A0.8501 (2)1.1503 (2)0.51873 (16)0.0947 (6)
O1B1.08032 (15)1.24797 (15)0.57701 (11)0.0587 (3)
C1E1.1521 (3)1.3319 (3)0.43439 (19)0.0748 (6)
H1E11.06941.41010.39960.090*
H1E21.17691.25230.37550.090*
C2E1.3156 (3)1.4200 (4)0.4343 (3)0.1057 (9)
H2E11.28821.50370.48750.159*
H2E21.37121.47100.34040.159*
H2E31.39301.34240.47470.159*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0358 (5)0.0632 (7)0.0518 (6)−0.0105 (5)−0.0048 (4)0.0003 (5)
C20.0325 (7)0.0602 (9)0.0533 (8)−0.0079 (6)−0.0035 (6)−0.0126 (7)
C30.0282 (6)0.0524 (8)0.0514 (8)−0.0040 (6)−0.0069 (6)−0.0141 (6)
C40.0306 (6)0.0461 (7)0.0475 (7)−0.0052 (5)−0.0062 (5)−0.0084 (6)
C50.0280 (6)0.0528 (8)0.0512 (8)−0.0071 (5)−0.0080 (5)−0.0077 (6)
C60.0338 (7)0.0543 (8)0.0469 (7)−0.0054 (6)−0.0076 (6)−0.0096 (6)
C6A0.0500 (9)0.0741 (11)0.0578 (10)−0.0051 (8)−0.0168 (7)0.0039 (8)
C3A0.0312 (7)0.0618 (9)0.0665 (10)−0.0022 (6)−0.0129 (6)−0.0156 (8)
C3B0.0486 (11)0.212 (3)0.0718 (14)0.0101 (15)−0.0214 (10)0.0165 (17)
O3A0.0314 (6)0.1083 (11)0.0932 (10)0.0034 (6)−0.0130 (6)−0.0053 (8)
O40.0332 (5)0.0616 (7)0.0687 (7)−0.0110 (5)−0.0157 (5)0.0110 (5)
C1A0.0461 (8)0.0541 (9)0.0544 (9)−0.0057 (7)−0.0108 (7)−0.0052 (7)
C2A0.0361 (7)0.0655 (10)0.0578 (9)−0.0158 (7)−0.0116 (6)0.0090 (7)
O20.0346 (6)0.0894 (9)0.0752 (8)−0.0196 (6)−0.0017 (5)−0.0007 (7)
O1A0.0861 (11)0.1290 (14)0.0670 (9)−0.0384 (10)−0.0321 (8)0.0022 (9)
O1B0.0544 (7)0.0653 (7)0.0469 (6)−0.0197 (5)−0.0051 (5)0.0040 (5)
C1E0.0799 (13)0.0853 (13)0.0456 (9)−0.0179 (10)−0.0010 (9)0.0044 (9)
C2E0.0910 (17)0.127 (2)0.0702 (13)−0.0493 (15)0.0077 (12)0.0197 (13)

Geometric parameters (Å, °)

O1—C61.3501 (16)C3B—H3B10.9600
O1—C21.404 (2)C3B—H3B20.9600
C2—O21.2024 (17)C3B—H3B30.9600
C2—C31.436 (2)O4—C2A1.4256 (17)
C3—C41.3856 (17)C1A—O1A1.189 (2)
C3—C3A1.486 (2)C1A—O1B1.3228 (18)
C4—O41.3326 (18)C1A—C2A1.489 (2)
C4—C51.417 (2)C2A—H2A10.9700
C5—C61.337 (2)C2A—H2A20.9700
C5—H50.9300O1B—C1E1.450 (2)
C6—C6A1.481 (2)C1E—C2E1.485 (3)
C6A—H6A10.9600C1E—H1E10.9700
C6A—H6A20.9600C1E—H1E20.9700
C6A—H6A30.9600C2E—H2E10.9600
C3A—O3A1.2073 (19)C2E—H2E20.9600
C3A—C3B1.476 (3)C2E—H2E30.9600
C6—O1—C2122.89 (12)H3B1—C3B—H3B2109.5
O2—C2—O1113.96 (15)C3A—C3B—H3B3109.5
O2—C2—C3129.34 (16)H3B1—C3B—H3B3109.5
O1—C2—C3116.68 (12)H3B2—C3B—H3B3109.5
C4—C3—C2118.59 (13)C4—O4—C2A121.02 (12)
C4—C3—C3A124.32 (14)O1A—C1A—O1B124.77 (16)
C2—C3—C3A117.09 (12)O1A—C1A—C2A126.07 (16)
O4—C4—C3117.09 (13)O1B—C1A—C2A109.14 (14)
O4—C4—C5121.74 (12)O4—C2A—C1A108.53 (13)
C3—C4—C5121.17 (13)O4—C2A—H2A1110.0
C6—C5—C4119.19 (12)C1A—C2A—H2A1110.0
C6—C5—H5120.4O4—C2A—H2A2110.0
C4—C5—H5120.4C1A—C2A—H2A2110.0
C5—C6—O1121.31 (13)H2A1—C2A—H2A2108.4
C5—C6—C6A126.34 (14)C1A—O1B—C1E117.97 (14)
O1—C6—C6A112.35 (13)O1B—C1E—C2E107.09 (17)
C6—C6A—H6A1109.5O1B—C1E—H1E1110.3
C6—C6A—H6A2109.5C2E—C1E—H1E1110.3
H6A1—C6A—H6A2109.5O1B—C1E—H1E2110.3
C6—C6A—H6A3109.5C2E—C1E—H1E2110.3
H6A1—C6A—H6A3109.5H1E1—C1E—H1E2108.6
H6A2—C6A—H6A3109.5C1E—C2E—H2E1109.5
O3A—C3A—C3B118.99 (17)C1E—C2E—H2E2109.5
O3A—C3A—C3119.99 (16)H2E1—C2E—H2E2109.5
C3B—C3A—C3120.99 (14)C1E—C2E—H2E3109.5
C3A—C3B—H3B1109.5H2E1—C2E—H2E3109.5
C3A—C3B—H3B2109.5H2E2—C2E—H2E3109.5
C6—O1—C2—O2−179.01 (14)C2—O1—C6—C51.2 (2)
C6—O1—C2—C32.6 (2)C2—O1—C6—C6A−179.19 (14)
O2—C2—C3—C4177.25 (16)C4—C3—C3A—O3A−153.29 (17)
O1—C2—C3—C4−4.6 (2)C2—C3—C3A—O3A26.1 (2)
O2—C2—C3—C3A−2.2 (3)C4—C3—C3A—C3B28.5 (3)
O1—C2—C3—C3A175.96 (13)C2—C3—C3A—C3B−152.2 (2)
C2—C3—C4—O4−176.87 (13)C3—C4—O4—C2A173.81 (14)
C3A—C3—C4—O42.5 (2)C5—C4—O4—C2A−6.3 (2)
C2—C3—C4—C53.3 (2)C4—O4—C2A—C1A159.18 (14)
C3A—C3—C4—C5−177.39 (14)O1A—C1A—C2A—O4−13.5 (3)
O4—C4—C5—C6−179.39 (14)O1B—C1A—C2A—O4168.37 (13)
C3—C4—C5—C60.5 (2)O1A—C1A—O1B—C1E−6.2 (3)
C4—C5—C6—O1−2.8 (2)C2A—C1A—O1B—C1E172.01 (16)
C4—C5—C6—C6A177.66 (16)C1A—O1B—C1E—C2E−178.72 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6A—H6A1···O2i0.962.533.462 (2)165
C5—H5···O3Ai0.932.383.3053 (19)174
C2A—H2A1···O3Ai0.972.573.355 (2)138
C2E—H2E2···O1ii0.962.543.484 (3)169

Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5170).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2008). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hernandez-Galan, R., Salva, J., Massannet, G. M. & Collado, I. G. (1993). Tetrahedron, 49, 1701–1702.
  • Prakash, O., Kumar, A. & Singh, S. P. (2004). Heterocycles, 63, 1193–1194.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography