PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m209–m210.
Published online 2010 January 30. doi:  10.1107/S1600536810003065
PMCID: PMC2979735

Poly[[aqua­(μ4-1H-benzimidazole-5,6-dicarboxyl­ato-κ4 N 3:O 5:O 5′:O 6)(N,N-dimethyl­formamide-κO)cadmium(II)] dihydrate]

Abstract

In the title compound, {[Cd(C9H4N2O4)(C3H7NO)(H2O)]·2H2O}n, the CdII atom is coordinated by one N atom and three O atoms from four different 1H-benzimidazole-5,6-dicarboxyl­ate (Hbidc) ligands, one O atom from one dimethyl­formamide ligand, and one O atom from a water mol­ecule in a distorted octa­hedral geometry. The Hbidc ligands connect the Cd atoms into a two-dimensional network parallel to (001). N—H(...)O and O—H(...)O hydrogen bonds involving the water molecules are observed in the crystal structure.

Related literature

For related structures of 1H-benzimidazole-5,6-dicarboxyl­ate complexes, see: Song, Wang, Hu et al. (2009 [triangle]); Song, Wang, Li et al. (2009 [triangle]); Song, Wang, Qin et al. (2009 [triangle]); Wang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m209-scheme1.jpg

Experimental

Crystal data

  • [Cd(C9H4N2O4)(C3H7NO)(H2O)]·2H2O
  • M r = 443.69
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m209-efi1.jpg
  • a = 7.7729 (16) Å
  • b = 9.1648 (18) Å
  • c = 11.458 (2) Å
  • α = 102.76 (3)°
  • β = 97.70 (3)°
  • γ = 94.96 (3)°
  • V = 783.2 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.44 mm−1
  • T = 293 K
  • 0.29 × 0.25 × 0.21 mm

Data collection

  • Rigaku/MSC Mercury CCD diffractometer
  • Absorption correction: multi-scan (REQAB; Jacobson, 1998 [triangle]) T min = 0.680, T max = 0.752
  • 6197 measured reflections
  • 2800 independent reflections
  • 1539 reflections with I > 2σ(I)
  • R int = 0.121

Refinement

  • R[F 2 > 2σ(F 2)] = 0.086
  • wR(F 2) = 0.223
  • S = 1.14
  • 2800 reflections
  • 219 parameters
  • 9 restraints
  • H-atom parameters constrained
  • Δρmax = 2.12 e Å−3
  • Δρmin = −1.80 e Å−3

Data collection: CrystalStructure (Rigaku/MSC, 2002 [triangle]); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810003065/hy2275sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003065/hy2275Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Guang Dong Ocean University for supporting this work.

supplementary crystallographic information

Comment

From the structural point of view, 1H-benzimidazole-5,6-dicarboxylic acid (H3bidc) possesses two N atoms of imidazole ring and four O atoms of carboxylate groups and might be used as versatile linker in constructing coordination polymers with abundant hydrogen bonds. Based on this idea, a series of coordination polymers fomed by this ligand have been reported by us: catena-poly[[diaqua(1,10-phenanthroline-κ2N,N')nickel(II)]- µ-Hbidc-κ2N3:O6] (Song, Wang, Hu et al., 2009), pentaaqua(Hbidc-κN3)cobalt(II) pentahydrate (Song, Wang, Li et al., 2009), pentaaqua(Hbidc-κN3)nickel(II) pentahydrate (Song, Wang, Qin et al., 2009), and tetraaquabis(Hbidc-κN3)cobalt(II) dimethylformamide disolvate dihydrate (Wang et al., 2009). In the present paper, we report the title complex.

As shown in Fig. 1, the CdII atom exhibits an octahedral coordination geometry, defined by three O atoms from three different Hbidc ligands, one N atom from another Hbidc ligand, one O atom from a dimethylformamide ligand and one O atom from a water molecule. The equatorial plane is defined by O1W, O10, N1i and O3iii atoms, while O1 and O4ii occupy the axial positions [symmetry codes: (i) -x, 1-y, 1-z; (ii) 1+x, y, z; (iii) -x, -y, 1-z]. Two solvent water molecules are present in the asymmetic unit. O—H···O and N—H···O hydrogen bonds are observed in the crystal structure with hydrogen-bond geometry in the normal range (Fig. 2 and Table 1).

Experimental

A dimethylformamide solution (20 ml) containing CdCl2(0.1 mmol) and H3bidc (0.2 mmol) was stirred for a few minutes in air, and then left to stand at room temperature. Colorless crystals were obtained in a few weeks.

Refinement

C- and N-bound H atoms were placed at calculated positions and treated as riding on the parent atoms, with C—H = 0.93 (CH), 0.96 (CH3), N—H = 0.86 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N). The water H-atoms were located in a difference Fourier map and refined as riding, with a distance restraint of O—H = 0.84 Å and with Uiso(H) = 1.5Ueq(O). The highest residual electron density was found 1.07 Å from Cd1 and the deepest hole 0.97 Å from Cd1.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing the 30% probability displacement ellipsoids. [Symmetry codes: (i) -x, 1-y, 1-z; (ii) 1+x, y, z; (iii) -x, -y,1-z.]
Fig. 2.
A view of the crystal packing. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cd(C9H4N2O4)(C3H7NO)(H2O)]·2H2OZ = 2
Mr = 443.69F(000) = 444
Triclinic, P1Dx = 1.881 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7729 (16) ÅCell parameters from 3441 reflections
b = 9.1648 (18) Åθ = 3.3–27.4°
c = 11.458 (2) ŵ = 1.44 mm1
α = 102.76 (3)°T = 293 K
β = 97.70 (3)°Block, colorless
γ = 94.96 (3)°0.29 × 0.25 × 0.21 mm
V = 783.2 (3) Å3

Data collection

Rigaku/MSC Mercury CCD diffractometer2800 independent reflections
Radiation source: fine-focus sealed tube1539 reflections with I > 2σ(I)
graphiteRint = 0.121
ω scansθmax = 25.2°, θmin = 3.3°
Absorption correction: multi-scan (REQAB; Jacobson, 1998)h = −9→7
Tmin = 0.680, Tmax = 0.752k = −10→10
6197 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.0683P)2 + 2.7388P] where P = (Fo2 + 2Fc2)/3
2800 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 2.12 e Å3
9 restraintsΔρmin = −1.80 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.32811 (14)0.19007 (13)0.58926 (9)0.0427 (4)
O10.1397 (12)0.1778 (11)0.7248 (7)0.043 (2)
O2−0.1244 (11)0.1608 (11)0.7803 (8)0.043 (2)
O1W0.5202 (9)0.0812 (8)0.7112 (7)0.045 (3)
O100.4501 (13)0.4197 (11)0.7028 (8)0.048 (3)
N1−0.1716 (14)0.7274 (13)0.5549 (9)0.037 (3)
N20.0418 (16)0.7573 (12)0.7100 (10)0.046 (3)
H20.12470.80190.76760.055*
N30.6296 (17)0.5826 (15)0.8605 (11)0.057 (4)
C1−0.0542 (18)0.8220 (17)0.6334 (13)0.044 (4)
H1−0.03820.92450.63620.053*
C2−0.1506 (16)0.5900 (15)0.5837 (12)0.035 (3)
C3−0.2450 (15)0.4482 (15)0.5278 (10)0.031 (3)
H3−0.33530.43700.46330.037*
C4−0.1988 (17)0.3261 (16)0.5722 (11)0.037 (3)
C5−0.0634 (17)0.3421 (14)0.6700 (11)0.033 (3)
C60.0295 (17)0.4860 (17)0.7241 (12)0.045 (4)
H60.12030.49990.78870.054*
C7−0.0192 (16)0.6032 (16)0.6778 (10)0.033 (3)
C8−0.0144 (18)0.2164 (15)0.7258 (12)0.039 (3)
C110.758 (3)0.606 (2)0.9664 (14)0.086 (6)
H11A0.76490.51230.99070.128*
H11B0.72500.67931.03060.128*
H11C0.86930.64070.94910.128*
C120.587 (2)0.713 (2)0.8183 (16)0.077 (6)
H12A0.56130.68680.73130.116*
H12B0.68350.79070.84450.116*
H12C0.48590.74770.85060.116*
C100.560 (2)0.4477 (19)0.7957 (13)0.054 (4)
H100.59750.36550.82260.065*
O3W0.7681 (13)0.2252 (9)1.0089 (11)0.127 (6)
H5W0.84650.21240.96500.190*
H6W0.69980.14460.98910.190*
O2W0.2935 (7)0.0032 (12)0.8739 (9)0.080 (4)
H3W0.39060.02070.85220.120*
H4W0.22730.05100.83640.120*
C9−0.2912 (17)0.1756 (17)0.5120 (11)0.036 (3)
O3−0.2155 (12)0.0562 (10)0.5048 (7)0.041 (2)
O4−0.4532 (9)0.1698 (8)0.4625 (7)0.043 (2)
H1W0.62790.10810.73150.065*
H2W0.4982−0.00840.67110.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0451 (7)0.0367 (7)0.0457 (6)−0.0036 (5)0.0070 (4)0.0115 (5)
O10.040 (6)0.042 (6)0.043 (5)−0.015 (5)0.005 (4)0.013 (4)
O20.033 (5)0.041 (6)0.059 (6)−0.002 (5)0.007 (4)0.024 (5)
O1W0.040 (5)0.038 (6)0.049 (5)−0.017 (5)0.006 (4)0.004 (5)
O100.054 (6)0.044 (7)0.039 (5)−0.003 (5)−0.005 (5)0.006 (5)
N10.035 (6)0.030 (7)0.042 (6)0.000 (6)0.000 (5)0.006 (5)
N20.056 (8)0.023 (7)0.053 (7)−0.007 (6)0.011 (6)0.002 (6)
N30.062 (9)0.034 (8)0.064 (8)0.003 (7)−0.009 (7)0.004 (7)
C10.048 (9)0.035 (9)0.064 (9)0.014 (7)0.021 (8)0.031 (8)
C20.030 (7)0.029 (8)0.057 (8)0.011 (6)0.020 (6)0.020 (7)
C30.025 (6)0.043 (9)0.023 (6)−0.010 (6)0.001 (5)0.010 (6)
C40.035 (8)0.040 (9)0.034 (7)−0.009 (7)0.003 (6)0.009 (6)
C50.045 (8)0.022 (7)0.033 (7)0.002 (6)0.006 (6)0.008 (6)
C60.032 (8)0.055 (10)0.043 (8)−0.006 (7)−0.007 (6)0.016 (7)
C70.029 (7)0.047 (9)0.029 (7)0.016 (7)0.003 (5)0.016 (6)
C80.041 (9)0.027 (8)0.043 (8)−0.011 (7)0.010 (6)−0.002 (6)
C110.105 (16)0.080 (15)0.052 (10)0.008 (12)−0.028 (10)0.001 (10)
C120.083 (14)0.063 (14)0.078 (12)0.011 (11)0.036 (10)−0.013 (10)
C100.065 (11)0.049 (11)0.049 (9)0.012 (9)0.009 (8)0.009 (8)
O3W0.171 (17)0.126 (15)0.085 (10)−0.006 (12)0.049 (10)0.020 (10)
O2W0.075 (8)0.090 (10)0.088 (8)0.009 (7)0.027 (7)0.041 (8)
C90.037 (8)0.044 (9)0.030 (7)0.006 (7)0.008 (6)0.015 (6)
O30.056 (6)0.028 (6)0.039 (5)0.000 (5)0.011 (4)0.005 (4)
O40.044 (6)0.037 (6)0.041 (5)−0.009 (5)0.008 (4)−0.001 (4)

Geometric parameters (Å, °)

Cd1—N1i2.226 (11)C3—C41.382 (19)
Cd1—O102.266 (9)C3—H30.9300
Cd1—O12.287 (8)C4—C51.404 (18)
Cd1—O3ii2.314 (9)C4—C91.472 (18)
Cd1—O1W2.344 (9)C5—C61.414 (18)
Cd1—O4iii2.373 (7)C5—C81.489 (19)
O1—C81.278 (16)C6—C71.359 (19)
O2—C81.261 (14)C6—H60.9300
O1W—H1W0.8380C11—H11A0.9600
O1W—H2W0.8382C11—H11B0.9600
O10—C101.236 (17)C11—H11C0.9600
N1—C11.301 (17)C12—H12A0.9600
N1—C21.388 (17)C12—H12B0.9600
N2—C11.346 (17)C12—H12C0.9600
N2—C71.400 (17)C10—H100.9300
N2—H20.8600O3W—H5W0.8411
N3—C101.320 (19)O3W—H6W0.8398
N3—C111.426 (19)O2W—H3W0.8389
N3—C121.43 (2)O2W—H4W0.8393
C1—H10.9300C9—O31.279 (16)
C2—C71.359 (18)C9—O41.302 (14)
C2—C31.407 (17)
N1i—Cd1—O1096.6 (4)C3—C4—C9118.6 (11)
N1i—Cd1—O1103.1 (4)C5—C4—C9119.8 (13)
O10—Cd1—O189.6 (3)C4—C5—C6119.5 (13)
N1i—Cd1—O3ii90.6 (4)C4—C5—C8123.9 (12)
O10—Cd1—O3ii172.6 (3)C6—C5—C8116.6 (12)
O1—Cd1—O3ii86.9 (3)C7—C6—C5117.3 (12)
N1i—Cd1—O1W169.1 (3)C7—C6—H6121.3
O10—Cd1—O1W88.5 (3)C5—C6—H6121.3
O1—Cd1—O1W86.5 (3)C6—C7—C2124.0 (13)
O3ii—Cd1—O1W84.8 (3)C6—C7—N2132.0 (12)
N1i—Cd1—O4iii85.9 (3)C2—C7—N2103.9 (12)
O10—Cd1—O4iii93.7 (3)O2—C8—O1123.0 (14)
O1—Cd1—O4iii170.0 (3)O2—C8—C5117.4 (13)
O3ii—Cd1—O4iii88.7 (3)O1—C8—C5119.3 (11)
O1W—Cd1—O4iii84.1 (3)N3—C11—H11A109.5
C8—O1—Cd1130.4 (8)N3—C11—H11B109.5
H1W—O1W—H2W112.2H11A—C11—H11B109.5
C10—O10—Cd1127.5 (11)N3—C11—H11C109.5
C1—N1—C2103.9 (12)H11A—C11—H11C109.5
C1—N1—Cd1i118.8 (10)H11B—C11—H11C109.5
C2—N1—Cd1i137.1 (9)N3—C12—H12A109.5
C1—N2—C7106.8 (11)N3—C12—H12B109.5
C1—N2—H2126.6H12A—C12—H12B109.5
C7—N2—H2126.6N3—C12—H12C109.5
C10—N3—C11123.2 (15)H12A—C12—H12C109.5
C10—N3—C12119.1 (14)H12B—C12—H12C109.5
C11—N3—C12117.5 (15)O10—C10—N3126.5 (16)
N1—C1—N2113.5 (13)O10—C10—H10116.7
N1—C1—H1123.2N3—C10—H10116.7
N2—C1—H1123.2H5W—O3W—H6W105.9
C7—C2—N1111.8 (12)H3W—O2W—H4W103.7
C7—C2—C3120.0 (13)O3—C9—O4121.1 (12)
N1—C2—C3128.2 (13)O3—C9—C4122.1 (12)
C4—C3—C2117.7 (11)O4—C9—C4116.8 (13)
C4—C3—H3121.2C9—O3—Cd1ii128.7 (8)
C2—C3—H3121.2C9—O4—Cd1iv118.5 (7)
C3—C4—C5121.6 (12)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) x+1, y, z; (iv) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2iii0.841.922.757 (11)177
O1W—H2W···O4ii0.841.852.649 (12)159
O2W—H3W···O1W0.842.162.888 (9)145
O2W—H4W···O10.842.002.811 (11)162
O3W—H5W···O2iii0.842.112.810 (12)140
O3W—H6W···O2Wv0.842.292.766 (14)117
N2—H2···O2Wvi0.862.182.970 (16)152

Symmetry codes: (iii) x+1, y, z; (ii) −x, −y, −z+1; (v) −x+1, −y, −z+2; (vi) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2275).

References

  • Jacobson, R. (1998). REQAB Private communication to the Molecular Structure Corporation, The Woodlands, Texas, USA.
  • Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, W.-D., Wang, H., Hu, S.-W., Qin, P.-W. & Li, S.-J. (2009). Acta Cryst. E65, m701. [PMC free article] [PubMed]
  • Song, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m702. [PMC free article] [PubMed]
  • Song, W.-D., Wang, H., Qin, P.-W., Li, S.-J. & Hu, S.-W. (2009). Acta Cryst. E65, m672. [PMC free article] [PubMed]
  • Wang, H., Song, W.-D., Li, S.-J., Miao, D.-L. & Liu, J. (2009). Acta Cryst. E65, m1423. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography