PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o252–o253.
Published online 2010 January 9. doi:  10.1107/S160053680905449X
PMCID: PMC2979734

Redetermination and absolute configuration of atalaphylline

Abstract

The title acridone alkaloid [systematic name: 1,3,5-trihydr­oxy-2,4-bis­(3-methyl­but-2-en­yl)acridin-9(10H)-one], C23H25NO4, has previously been reported as crystallizing in the chiral ortho­rhom­bic space group P212121 [Chantrapromma et al. (2010 [triangle]). Acta Cryst. E66, o81–o82] but the absolute configuration could not be determined from data collected with Mo radiation. The absolute configuration has now been determined by refinement of the Flack parameter with data collected using Cu radiation. All features of the mol­ecule and its crystal packing are similar to those previously described.

Related literature

For details of acridone alkaloids see: Basu & Basa (1972 [triangle]). For the previous structure determination, see: Chantrapromma et al. (2010 [triangle]). For hydrogen-bond motifs, see Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o252-scheme1.jpg

Experimental

Crystal data

  • C23H25NO4
  • M r = 379.44
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o252-efi1.jpg
  • a = 5.0838 (1) Å
  • b = 15.0262 (3) Å
  • c = 24.6412 (4) Å
  • V = 1882.35 (6) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.74 mm−1
  • T = 150 K
  • 0.40 × 0.21 × 0.04 mm

Data collection

  • Bruker APEX Duo CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.755, T max = 0.970
  • 11768 measured reflections
  • 3145 independent reflections
  • 3099 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.068
  • S = 1.06
  • 3145 reflections
  • 354 parameters
  • All H-atom parameters refined
  • Δρmax = 0.12 e Å−3
  • Δρmin = −0.10 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1280 Friedel pairs
  • Flack parameter: 0.05 (13)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680905449X/sj2714sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905449X/sj2714Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government and the Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. Mr Nawong Boonnak is acknowledged for supplying the atalaphylline crystal. CSY thanks USM for the award of a USM Fellowship. SC thanks Prince of Songkla University for financial support through the Crystal Materials Research Unit.

supplementary crystallographic information

Comment

The title acridone alkaloid (I) known as atalaphylline (Basu & Basa, 1972), was isolated from the roots of Atalantia monophylla Corrêa, a mangrove plant which was collected from Trang province in the southern part of Thailand. Although (I) has been previously reported (Chantrapromma et al., 2010), the absolute configuration could not be determined due to insufficient anomalous dispersion from the light atoms using the data set collected with Mo radiation. The data of the same sample was recollected using Cu radiation with our newly-installed Bruker Apex-Duo CCD diffractometer and the absolute configulation was determined by making use of the large anomalous scattering of Cu KαX-radiation with the Flack parameter being refined to 0.05 (13). We report herein the crystal structure of (I) with data collected using Cu radiation.

Fig. 1 shows the molecular structure of (I), bond lengths and angles are closely similar to those previously described (Chantrapromma et al., 2010). (I) is chiral even though it has no chiral center because its mirror image cannot be superposed onto itself. This is due to the arrangements of the two 3-methylbut-2-enyl side-chains at atoms C1 and C12. (I) crystallized as a single enantiomer in chiral orthorhombic P212121 space group. The current structure determination represents a significant improvement compared with the structure determined from the data taken with Mo radiation and it confirmed the absolute conformation of the side-chains for (I). To be precise the two 3-methyl-2-enyl groups at C1 and C12 are attached in such a way that these two side-chains are below the acridone molecular plane indicating the (-)-anticlinal conformation with the torsion angles C2–C1–C19–C20 and C13–C12–C14–C15 are -102.65 (13) and -119.77 (33)°, respectively.

Fig. 2 shows the crystal packing of (I). Intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Table 1) linked the molecules into infinite one dimensional screw-chains along the [0 1 0] direction. These features are similar to those of the previous report by Chantrapromma et al. (2010) except there is an additional weak intermolecular C—H···O interaction and a π–π interaction with a Cg1···Cg2 distance of 3.7643 (7) Å (symmetry code: -1+x, y, z); Cg1 and Cg2 are the centroids of C3–C5/C10–C11/N1 and C5–C10 rings, respectively . These differences are due to the fact that all the hydrogen atoms are refined freely whereas in previous report by Chantrapromma et al. (2010), the hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms.

Experimental

The compound was isolated and crystal grown as reported by Chantrapromma et al. (2010).

Refinement

All H atoms were located from the difference map and isotropically refined. The highest residual electron density peak is located at 0.66 Å from C3 and the deepest hole is located at 0.84 Å from H1N1. 1280 Friedel pairs were used to find the absolute configuration.

Figures

Fig. 1.
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular hydrogen bonds are shown as dashed lines.
Fig. 2.
The crystal packing of (I) viewed along the a axis, showing screw chains along the [0 1 0] direction. Hydrogen bonds are shown as dashed lines.

Crystal data

C23H25NO4F(000) = 808
Mr = 379.44Dx = 1.339 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 3145 reflections
a = 5.0838 (1) Åθ = 6.1–64.9°
b = 15.0262 (3) ŵ = 0.74 mm1
c = 24.6412 (4) ÅT = 150 K
V = 1882.35 (6) Å3Plate, brown
Z = 40.40 × 0.21 × 0.04 mm

Data collection

Bruker APEX Duo CCD area-detector diffractometer3145 independent reflections
Radiation source: sealed tube3099 reflections with I > 2σ(I)
graphiteRint = 0.017
[var phi] and ω scansθmax = 64.9°, θmin = 6.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −5→5
Tmin = 0.755, Tmax = 0.970k = −17→17
11768 measured reflectionsl = −28→28

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.025w = 1/[σ2(Fo2) + (0.0452P)2 + 0.1806P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.12 e Å3
3145 reflectionsΔρmin = −0.10 e Å3
354 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0020 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1280 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.05 (13)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 150.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.33887 (19)0.33672 (5)0.16257 (4)0.0319 (2)
H1O10.469 (4)0.3351 (12)0.1882 (7)0.049 (5)*
O20.72372 (18)0.37879 (5)0.22397 (3)0.0312 (2)
O30.90459 (19)0.77102 (5)0.22853 (3)0.0318 (2)
H1O30.997 (4)0.8077 (12)0.2462 (7)0.044 (4)*
O4−0.06425 (19)0.56721 (6)0.06026 (4)0.0361 (2)
H1O4−0.139 (5)0.5215 (14)0.0460 (8)0.063 (6)*
N10.6200 (2)0.63969 (6)0.18325 (4)0.0264 (2)
H1N10.606 (4)0.6957 (12)0.1732 (6)0.038 (4)*
C10.1336 (2)0.44827 (8)0.11088 (5)0.0273 (3)
C20.3211 (2)0.42334 (8)0.14856 (5)0.0261 (3)
C30.4921 (2)0.48690 (7)0.17304 (4)0.0251 (3)
C40.6888 (2)0.46022 (8)0.21176 (5)0.0262 (3)
C50.8448 (3)0.52966 (8)0.23719 (5)0.0269 (3)
C61.0361 (3)0.50956 (8)0.27663 (5)0.0331 (3)
H6A1.074 (3)0.4477 (10)0.2852 (6)0.030 (3)*
C71.1787 (3)0.57660 (9)0.29998 (6)0.0381 (3)
H7A1.318 (4)0.5600 (11)0.3267 (7)0.045 (4)*
C81.1372 (3)0.66535 (9)0.28512 (5)0.0343 (3)
H8A1.240 (4)0.7140 (12)0.3021 (7)0.057 (5)*
C90.9535 (3)0.68681 (8)0.24628 (5)0.0281 (3)
C100.8034 (2)0.61840 (8)0.22173 (5)0.0259 (3)
C110.4625 (2)0.57783 (7)0.15855 (5)0.0255 (2)
C120.2744 (2)0.60509 (8)0.12029 (5)0.0274 (3)
C130.1178 (2)0.53936 (8)0.09727 (5)0.0277 (3)
C140.2289 (3)0.70240 (8)0.10748 (6)0.0319 (3)
H14A0.081 (4)0.7041 (11)0.0827 (7)0.049 (5)*
H14B0.184 (3)0.7325 (11)0.1402 (7)0.040 (4)*
C150.4574 (3)0.74968 (8)0.08153 (5)0.0313 (3)
H15A0.544 (3)0.7170 (10)0.0517 (6)0.041 (4)*
C160.5452 (3)0.83055 (8)0.09368 (5)0.0346 (3)
C170.7648 (4)0.87331 (12)0.06276 (8)0.0536 (4)
H17A0.917 (5)0.8886 (16)0.0890 (10)0.087 (7)*
H17B0.829 (4)0.8328 (14)0.0332 (8)0.065 (6)*
H17C0.715 (4)0.9270 (13)0.0451 (7)0.053 (5)*
C180.4364 (4)0.88686 (9)0.13869 (7)0.0469 (4)
H18A0.281 (5)0.8592 (14)0.1596 (9)0.071 (6)*
H18B0.563 (6)0.8967 (17)0.1648 (10)0.096 (8)*
H18C0.371 (4)0.9448 (14)0.1242 (8)0.063 (5)*
C19−0.0548 (3)0.38053 (8)0.08652 (5)0.0301 (3)
H19A−0.048 (3)0.3304 (11)0.1104 (6)0.039 (4)*
H19B−0.240 (4)0.4055 (10)0.0883 (6)0.042 (4)*
C200.0167 (3)0.35223 (7)0.02981 (5)0.0312 (3)
H20A0.179 (3)0.3171 (10)0.0264 (6)0.037 (4)*
C21−0.1104 (3)0.37003 (8)−0.01615 (5)0.0351 (3)
C22−0.0091 (4)0.33621 (11)−0.06969 (6)0.0509 (4)
H22A−0.149 (5)0.3035 (14)−0.0897 (8)0.069 (6)*
H22B0.043 (4)0.3915 (13)−0.0939 (8)0.061 (5)*
H22C0.179 (5)0.2984 (15)−0.0653 (9)0.080 (7)*
C23−0.3525 (3)0.42646 (13)−0.02079 (7)0.0520 (4)
H23A−0.490 (5)0.3962 (16)−0.0444 (9)0.083 (7)*
H23B−0.312 (6)0.4882 (19)−0.0386 (10)0.099 (8)*
H23C−0.438 (4)0.4365 (11)0.0152 (8)0.050 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0368 (5)0.0218 (4)0.0370 (5)−0.0033 (3)−0.0036 (4)−0.0006 (3)
O20.0342 (5)0.0199 (4)0.0395 (5)0.0001 (4)−0.0059 (4)0.0012 (3)
O30.0387 (5)0.0210 (4)0.0357 (4)−0.0020 (4)−0.0080 (4)−0.0015 (3)
O40.0340 (5)0.0337 (5)0.0406 (5)−0.0034 (4)−0.0116 (4)0.0020 (4)
N10.0280 (5)0.0194 (5)0.0318 (5)−0.0012 (4)−0.0023 (4)−0.0003 (4)
C10.0269 (6)0.0283 (6)0.0266 (5)−0.0036 (5)0.0034 (5)−0.0033 (4)
C20.0280 (6)0.0228 (5)0.0275 (5)−0.0009 (5)0.0051 (5)−0.0020 (4)
C30.0253 (6)0.0234 (5)0.0266 (5)−0.0007 (5)0.0032 (5)−0.0022 (4)
C40.0271 (6)0.0234 (5)0.0280 (5)0.0009 (4)0.0023 (5)−0.0008 (4)
C50.0286 (6)0.0229 (6)0.0290 (6)−0.0007 (5)0.0010 (5)−0.0014 (4)
C60.0396 (7)0.0238 (6)0.0358 (6)0.0027 (5)−0.0084 (6)0.0009 (5)
C70.0438 (8)0.0299 (6)0.0405 (7)−0.0008 (6)−0.0164 (6)−0.0005 (5)
C80.0402 (7)0.0271 (6)0.0356 (7)−0.0038 (5)−0.0096 (6)−0.0039 (5)
C90.0324 (7)0.0222 (5)0.0298 (6)−0.0015 (5)0.0004 (5)−0.0027 (4)
C100.0261 (6)0.0254 (6)0.0263 (6)0.0013 (5)0.0012 (5)−0.0011 (4)
C110.0245 (6)0.0234 (5)0.0285 (6)−0.0012 (5)0.0028 (5)−0.0016 (4)
C120.0254 (6)0.0261 (6)0.0306 (6)0.0000 (5)0.0001 (5)−0.0003 (5)
C130.0255 (6)0.0295 (6)0.0281 (5)−0.0004 (5)0.0012 (5)0.0012 (5)
C140.0286 (7)0.0269 (6)0.0403 (7)0.0007 (5)−0.0047 (6)0.0011 (5)
C150.0329 (7)0.0300 (6)0.0310 (6)0.0029 (6)−0.0039 (5)0.0032 (5)
C160.0325 (7)0.0297 (6)0.0414 (7)−0.0017 (5)−0.0116 (6)0.0106 (5)
C170.0408 (8)0.0440 (8)0.0759 (12)−0.0058 (7)−0.0023 (8)0.0237 (8)
C180.0621 (10)0.0288 (6)0.0497 (8)−0.0040 (7)−0.0127 (8)−0.0037 (6)
C190.0311 (7)0.0291 (6)0.0300 (6)−0.0058 (6)−0.0005 (5)−0.0009 (5)
C200.0338 (7)0.0245 (5)0.0353 (6)−0.0031 (5)0.0022 (5)−0.0027 (5)
C210.0413 (7)0.0318 (6)0.0323 (6)−0.0113 (6)−0.0007 (6)−0.0002 (5)
C220.0705 (11)0.0481 (8)0.0341 (7)−0.0124 (8)0.0028 (7)−0.0042 (6)
C230.0417 (8)0.0680 (11)0.0465 (9)0.0000 (8)−0.0128 (7)−0.0005 (8)

Geometric parameters (Å, °)

O1—C21.3497 (15)C12—C141.5137 (16)
O1—H1O10.92 (2)C14—C151.5045 (18)
O2—C41.2725 (14)C14—H14A0.97 (2)
O3—C91.3617 (14)C14—H14B0.954 (16)
O3—H1O30.845 (19)C15—C161.3285 (18)
O4—C131.3651 (15)C15—H15A0.986 (16)
O4—H1O40.86 (2)C16—C171.497 (2)
N1—C101.3679 (16)C16—C181.501 (2)
N1—C111.3695 (15)C17—H17A1.03 (3)
N1—H1N10.880 (17)C17—H17B1.00 (2)
C1—C21.3825 (18)C17—H17C0.95 (2)
C1—C131.4114 (17)C18—H18A1.03 (2)
C1—C191.5209 (16)C18—H18B0.92 (3)
C2—C31.4254 (16)C18—H18C1.00 (2)
C3—C111.4203 (16)C19—C201.5051 (17)
C3—C41.4393 (17)C19—H19A0.957 (16)
C4—C51.4525 (16)C19—H19B1.015 (19)
C5—C101.4026 (17)C20—C211.3311 (19)
C5—C61.4078 (18)C20—H20A0.982 (17)
C6—C71.3679 (19)C21—C231.499 (2)
C6—H6A0.973 (15)C21—C221.505 (2)
C7—C81.3990 (19)C22—H22A0.99 (2)
C7—H7A0.997 (18)C22—H22B1.06 (2)
C8—C91.3754 (18)C22—H22C1.12 (3)
C8—H8A0.99 (2)C23—H23A1.02 (3)
C9—C101.4159 (17)C23—H23B1.05 (3)
C11—C121.4041 (17)C23—H23C0.999 (19)
C12—C131.3895 (17)
C2—O1—H1O1104.5 (11)C12—C14—H14A106.0 (10)
C9—O3—H1O3109.9 (12)C15—C14—H14B108.8 (10)
C13—O4—H1O4109.2 (14)C12—C14—H14B108.6 (10)
C10—N1—C11123.22 (10)H14A—C14—H14B109.5 (14)
C10—N1—H1N1118.3 (11)C16—C15—C14126.55 (13)
C11—N1—H1N1118.5 (11)C16—C15—H15A118.3 (10)
C2—C1—C13117.48 (11)C14—C15—H15A115.1 (9)
C2—C1—C19121.19 (11)C15—C16—C17121.91 (15)
C13—C1—C19121.29 (11)C15—C16—C18123.95 (13)
O1—C2—C1118.64 (10)C17—C16—C18114.14 (14)
O1—C2—C3119.81 (11)C16—C17—H17A109.5 (14)
C1—C2—C3121.55 (11)C16—C17—H17B110.5 (12)
C11—C3—C2118.26 (10)H17A—C17—H17B110.4 (19)
C11—C3—C4120.55 (10)C16—C17—H17C113.6 (12)
C2—C3—C4121.18 (10)H17A—C17—H17C107.3 (17)
O2—C4—C3121.43 (11)H17B—C17—H17C105.5 (16)
O2—C4—C5120.84 (11)C16—C18—H18A115.1 (12)
C3—C4—C5117.72 (10)C16—C18—H18B110.4 (17)
C10—C5—C6119.67 (11)H18A—C18—H18B104.6 (18)
C10—C5—C4118.94 (11)C16—C18—H18C110.5 (11)
C6—C5—C4121.39 (11)H18A—C18—H18C105.9 (17)
C7—C6—C5119.90 (12)H18B—C18—H18C110 (2)
C7—C6—H6A120.5 (9)C20—C19—C1113.79 (10)
C5—C6—H6A119.5 (9)C20—C19—H19A109.9 (9)
C6—C7—C8120.79 (12)C1—C19—H19A105.1 (10)
C6—C7—H7A118.0 (10)C20—C19—H19B111.7 (9)
C8—C7—H7A121.2 (10)C1—C19—H19B108.6 (9)
C9—C8—C7120.54 (12)H19A—C19—H19B107.4 (14)
C9—C8—H8A118.7 (11)C21—C20—C19128.01 (13)
C7—C8—H8A120.8 (11)C21—C20—H20A116.2 (9)
O3—C9—C8124.42 (11)C19—C20—H20A115.8 (9)
O3—C9—C10116.04 (11)C20—C21—C23125.26 (13)
C8—C9—C10119.53 (11)C20—C21—C22120.79 (14)
N1—C10—C5120.86 (11)C23—C21—C22113.91 (14)
N1—C10—C9119.58 (11)C21—C22—H22A110.9 (12)
C5—C10—C9119.56 (11)C21—C22—H22B108.4 (10)
N1—C11—C12119.91 (10)H22A—C22—H22B106.7 (15)
N1—C11—C3118.64 (11)C21—C22—H22C112.3 (11)
C12—C11—C3121.44 (10)H22A—C22—H22C114.1 (16)
C13—C12—C11117.19 (11)H22B—C22—H22C103.9 (16)
C13—C12—C14120.93 (11)C21—C23—H23A110.8 (14)
C11—C12—C14121.73 (11)C21—C23—H23B111.8 (17)
O4—C13—C12116.30 (11)H23A—C23—H23B107 (2)
O4—C13—C1119.64 (11)C21—C23—H23C112.1 (11)
C12—C13—C1124.04 (11)H23A—C23—H23C106.0 (17)
C15—C14—C12115.26 (11)H23B—C23—H23C108.9 (17)
C15—C14—H14A108.6 (10)
C13—C1—C2—O1179.51 (10)O3—C9—C10—C5179.04 (11)
C19—C1—C2—O11.60 (17)C8—C9—C10—C5−0.24 (18)
C13—C1—C2—C30.19 (17)C10—N1—C11—C12178.53 (10)
C19—C1—C2—C3−177.72 (10)C10—N1—C11—C3−0.68 (17)
O1—C2—C3—C11−178.11 (10)C2—C3—C11—N1177.81 (10)
C1—C2—C3—C111.20 (17)C4—C3—C11—N1−1.72 (16)
O1—C2—C3—C41.42 (16)C2—C3—C11—C12−1.39 (16)
C1—C2—C3—C4−179.27 (11)C4—C3—C11—C12179.08 (11)
C11—C3—C4—O2−177.79 (11)N1—C11—C12—C13−179.03 (11)
C2—C3—C4—O22.69 (17)C3—C11—C12—C130.16 (17)
C11—C3—C4—C53.05 (16)N1—C11—C12—C14−3.44 (17)
C2—C3—C4—C5−176.47 (10)C3—C11—C12—C14175.74 (11)
O2—C4—C5—C10178.75 (11)C11—C12—C13—O4179.87 (10)
C3—C4—C5—C10−2.09 (16)C14—C12—C13—O44.25 (17)
O2—C4—C5—C6−1.00 (18)C11—C12—C13—C11.35 (18)
C3—C4—C5—C6178.17 (12)C14—C12—C13—C1−174.27 (11)
C10—C5—C6—C70.6 (2)C2—C1—C13—O4180.00 (10)
C4—C5—C6—C7−179.67 (12)C19—C1—C13—O4−2.10 (17)
C5—C6—C7—C8−0.1 (2)C2—C1—C13—C12−1.53 (18)
C6—C7—C8—C9−0.6 (2)C19—C1—C13—C12176.37 (11)
C7—C8—C9—O3−178.45 (13)C13—C12—C14—C15−119.77 (13)
C7—C8—C9—C100.8 (2)C11—C12—C14—C1564.81 (16)
C11—N1—C10—C51.65 (17)C12—C14—C15—C16−136.97 (13)
C11—N1—C10—C9−178.35 (11)C14—C15—C16—C17−176.18 (13)
C6—C5—C10—N1179.57 (11)C14—C15—C16—C183.8 (2)
C4—C5—C10—N1−0.18 (17)C2—C1—C19—C20−102.65 (13)
C6—C5—C10—C9−0.43 (18)C13—C1—C19—C2079.52 (15)
C4—C5—C10—C9179.82 (11)C1—C19—C20—C21−111.01 (15)
O3—C9—C10—N1−0.96 (16)C19—C20—C21—C232.4 (2)
C8—C9—C10—N1179.75 (11)C19—C20—C21—C22179.80 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.915 (19)1.699 (19)2.5528 (13)154.1 (17)
O3—H1O3···O2i0.845 (19)1.923 (19)2.7501 (12)165.9 (19)
N1—H1N1···O30.880 (18)2.333 (18)2.6893 (13)104.3 (13)
C8—H8A···O2i0.991 (19)2.565 (18)3.2918 (16)130.1 (13)
C14—H14A···O40.969 (19)2.254 (17)2.7752 (16)112.6 (12)
C19—H19A···O10.957 (16)2.352 (15)2.8197 (17)109.6 (11)

Symmetry codes: (i) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2714).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Basu, D. & Basa, S. C. (1972). J. Org. Chem 37, 3035–3036.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chantrapromma, S., Boonnak, N., Razak, I. A. & Fun, H.-K. (2010). Acta Cryst. E66, o81–o82. [PMC free article] [PubMed]
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography