PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m186–m187.
Published online 2010 January 23. doi:  10.1107/S1600536810002096
PMCID: PMC2979730

catena-Poly[diquinolinium [[diaqua­cobaltate(II)]-μ-cyclo­tetra­phosphato] hexa­hydrate]

Abstract

The cyclo­tetra­phosphate anion, [P4O12]4−, forms the title complex with cobalt(II) and quinolinium, {(C9H8N)2[Co(P4O12)(H2O)2]·6H2O}n. In the complex anion, the CoII ion, lying on an inversion center, is surrounded by four phosphate O atoms and two water mol­ecules in a slightly distorted octa­hedral geometry. The crystal structure consists of anionic ribbons of formula {[Co(P4O12)(H2O)2]2−}n extending along [100]. A network of O—H(...)O, N—H(...)O and C—H(...)O hydrogen bonds consolidates the crystal packing.

Related literature

For the crystal chemistry of condensed phosphates, see: Durif (1995 [triangle]). For general background to transition metal–organic derivatives of polyoxoanions, see: Feher & Budzichowski (1995 [triangle]); Guerrero et al. (1999 [triangle]); Ikotun et al. (2008 [triangle]); Lugmair & Tilley (1998 [triangle]). For general background to hydrogen bonds, see: Blessing (1986 [triangle]); Brown (1976 [triangle]); Steiner & Saenger (1993 [triangle]). For the synthesis, see: Ondik (1964 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m186-scheme1.jpg

Experimental

Crystal data

  • (C9H8N)2[Co(P4O12)(H2O)2]·6H2O
  • M r = 779.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m186-efi1.jpg
  • a = 7.443 (3) Å
  • b = 10.037 (4) Å
  • c = 10.682 (7) Å
  • α = 83.74 (4)°
  • β = 70.98 (4)°
  • γ = 85.71 (3)°
  • V = 749.4 (6) Å3
  • Z = 1
  • Ag Kα radiation
  • λ = 0.56083 Å
  • μ = 0.46 mm−1
  • T = 293 K
  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer
  • 12878 measured reflections
  • 7242 independent reflections
  • 4531 reflections with I > 2σ(I)
  • R int = 0.039
  • 2 standard reflections every 120 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.164
  • S = 0.98
  • 7242 reflections
  • 237 parameters
  • 13 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.11 e Å−3
  • Δρmin = −1.46 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002096/hy2272sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002096/hy2272Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Transition metal–organic derivatives of polyoxoanions have recently been attracting considerable attention, because they serve as molecular models of metal species bound on oxo surfaces of heterogeneous catalysts (Feher & Budzichowski, 1995). In this context, several frameworks of this kind of materials with one-, two- or three-dimensional networks have been successfully constructed by using monophosphates, monophosphonates and monophosphinates (Guerrero et al., 1999; Lugmair & Tilley, 1998). In contrast, structural diversity of transition metal–organic derivatives of condensed phosphates has been much less explored. In order to enrich the varieties in such kinds of hybrid materials, we report the synthesis and crystal structure of (C9H8N)2[Co(P4O12)(H2O)2].6H2O.

The title compound contains protonated quinolinium cations, diaquacyclotetraphosphatocobaltate(II) dianions and water molecules (Fig. 1). The cyclic phosphate anion, [P4O12]4-, is located around an inversion center and so is built up by only two independent PO4 tetrahedra. Its main geometrical features [the bond lengths P—O = 1.473 (2)–1.603 (2) Å, and the bond angles O—P—O = 100.24 (9)–121.11 (1)°, P—O—P = 134.40 (1)–137.25 (1)°] are not significantly different from what is commonly observed in other cyclotetraphosphate anions with the same internal symmetry (Durif, 1995). The coordination polyhedron of the CoII atom, which lies on an inversion center, is octahedral with four external O atoms O(E) from two adjacent bidentate cyclotetraphosphates and two water O atoms O(w), providing a Co atom with six O donor set [four O(E) equatorial arrangement with two axial O(w)]. The Co—O bond lengths fall within the range of 2.106 (2)–2.116 (2) Å. The shortest distance between two neighboring Co atoms is 7.443 (3) Å. This distance could explain the cobalt magnetic properties in several materials (Ikotun et al., 2008). The [CoO4(H2O)2] octahedra alternate with the P4O12 rings as to form infinite ribbons, fused through Co—O—P linkage, propagating along the a axis (Fig. 2). The protonated quinolinim is located in the inter-ribbons spacing, and it neutralizes the negative charge of the anionic part. These organic entities are planar as evidenced by the mean deviation (±0.005 Å) from least square plane defined by the nine constituent atoms. As well as electrostatic and van der Waals interactions, the component species of the title compound establish a three-dimensional network through N—H···O and O—H···O hydrogen bonds. The structure is further stabilized with non-classical hydrogen bonds of the C—H···O type (Steiner & Saenger, 1993). The examination of the hydrogen-bond scheme shows that hydrogen bond connecting C9 to the phosphate group and water molecule is bifurcated. In the structure, there are two strong hydrogen bonds, with O···O distances of 2.666 (3) and 2.728 (3) Å. The others are weaker, with O(N, C)···O ranging from 2.743 (3) to 3.459 (4) Å (Blessing, 1986; Brown, 1976).

Experimental

The title compound was prepared by adding ethanolic solution (5 ml) of quinoline (8.34 mmol) dropwise to a mixture of H4P4O12 (4.15 mmol) and CoCl2 (4.15 mmol) in water (20 ml). Pink prism crystals of good quality were obtained after a slow evaporation during few days at ambient temperature. The cyclotetraphosphoric acid, H4P4O12, was produced from Na4P4O12.4H2O, prepared according to the Ondik process (Ondik, 1964) through an ion-exchange resin in H-state (Amberlite IR 120).

Refinement

H atoms on C and N atoms were positioned geometrically and treated as riding on their parent atoms, with N—H = 0.86, C—H =0.93 Å and with Uiso(H) = 1.2Ueq(C,N). H atoms of water molecules were located from difference Fourier maps and refined isotropically. The highest residual electron density was found 0.73 Å from Co1 and the deepest hole 0.76 Å from Co1.

Figures

Fig. 1.
The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) 2-x, 1-y, 1-z.]
Fig. 2.
Projection of the title compound along the b axis.

Crystal data

(C9H8N)2[Co(P4O12)(H2O)2]·6H2OZ = 1
Mr = 779.27F(000) = 401
Triclinic, P1Dx = 1.727 Mg m3
Hall symbol: -P 1Ag Kα radiation, λ = 0.56083 Å
a = 7.443 (3) ÅCell parameters from 25 reflections
b = 10.037 (4) Åθ = 9.0–11.0°
c = 10.682 (7) ŵ = 0.46 mm1
α = 83.74 (4)°T = 293 K
β = 70.98 (4)°Prism, pink
γ = 85.71 (3)°0.20 × 0.18 × 0.16 mm
V = 749.4 (6) Å3

Data collection

Enraf–Nonius TurboCAD-4 diffractometerRint = 0.039
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.2°
graphiteh = −12→12
non–profiled ω/2θ scansk = −16→16
12878 measured reflectionsl = −17→10
7242 independent reflections2 standard reflections every 120 min
4531 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 0.98w = 1/[σ2(Fo2) + (0.097P)2] where P = (Fo2 + 2Fc2)/3
7242 reflections(Δ/σ)max = 0.022
237 parametersΔρmax = 1.11 e Å3
13 restraintsΔρmin = −1.46 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50000.50000.50000.02117 (10)
P20.84035 (7)0.67186 (5)0.52866 (5)0.02037 (11)
P10.94639 (7)0.49127 (5)0.31420 (5)0.02082 (11)
O50.7442 (2)0.47075 (18)0.33361 (17)0.0290 (3)
O90.8351 (3)0.81917 (16)0.5033 (2)0.0353 (4)
O80.9759 (3)0.63833 (17)0.6180 (2)0.0329 (4)
O70.9688 (2)0.61035 (16)0.39418 (17)0.0284 (3)
O10.4503 (3)0.68127 (18)0.39353 (19)0.0348 (4)
O61.0732 (3)0.5182 (2)0.17668 (18)0.0410 (4)
C11.2832 (4)0.9562 (2)−0.0159 (3)0.0314 (4)
N11.3663 (3)0.8353 (2)−0.0577 (2)0.0350 (4)
H11.38360.77360.00020.042*
C21.2288 (5)0.9765 (3)0.1194 (3)0.0432 (6)
H21.24880.90920.18110.052*
C61.2539 (4)1.0555 (3)−0.1110 (3)0.0370 (5)
C71.3093 (5)1.0269 (3)−0.2441 (3)0.0447 (6)
H71.28791.0908−0.30820.054*
C31.1460 (6)1.0973 (4)0.1583 (4)0.0549 (8)
H31.10941.11280.24760.066*
C81.3942 (5)0.9057 (4)−0.2799 (3)0.0495 (7)
H81.43400.8876−0.36860.059*
C91.4211 (4)0.8100 (3)−0.1843 (3)0.0437 (6)
H91.47800.7269−0.20860.052*
C51.1660 (5)1.1797 (3)−0.0655 (4)0.0512 (8)
H51.14331.2478−0.12550.061*
C41.1153 (6)1.1986 (3)0.0652 (4)0.0607 (10)
H41.05901.28050.09400.073*
O100.6636 (2)0.59823 (17)0.58700 (16)0.0282 (3)
O21.3962 (3)0.65569 (19)0.14615 (19)0.0358 (4)
O31.3081 (3)0.5195 (2)−0.0816 (2)0.0412 (4)
O40.2153 (3)0.9054 (2)0.4559 (3)0.0549 (6)
H110.369 (4)0.735 (3)0.436 (3)0.044 (10)*
H210.436 (5)0.674 (4)0.320 (2)0.052 (11)*
H121.496 (3)0.610 (3)0.118 (4)0.052 (11)*
H221.299 (3)0.613 (3)0.163 (4)0.046 (10)*
H131.208 (4)0.513 (4)−0.013 (2)0.052 (11)*
H231.264 (5)0.505 (4)−0.145 (2)0.056 (11)*
H140.231 (5)0.990 (2)0.451 (4)0.056 (11)*
H240.098 (3)0.897 (3)0.465 (4)0.056 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.01923 (17)0.02359 (18)0.02047 (18)0.00158 (13)−0.00587 (13)−0.00424 (13)
P20.0235 (2)0.0164 (2)0.0224 (2)0.00486 (16)−0.00927 (18)−0.00462 (16)
P10.0217 (2)0.0241 (2)0.0155 (2)0.00357 (17)−0.00460 (16)−0.00431 (17)
O50.0228 (7)0.0389 (9)0.0272 (8)0.0059 (6)−0.0095 (6)−0.0111 (6)
O90.0451 (10)0.0176 (7)0.0457 (11)0.0086 (6)−0.0190 (8)−0.0054 (7)
O80.0385 (9)0.0262 (7)0.0439 (10)0.0039 (6)−0.0270 (8)−0.0061 (7)
O70.0277 (7)0.0257 (7)0.0277 (8)−0.0016 (6)−0.0009 (6)−0.0091 (6)
O10.0473 (10)0.0289 (8)0.0294 (9)0.0092 (7)−0.0153 (8)−0.0057 (7)
O60.0442 (10)0.0516 (11)0.0189 (7)−0.0067 (9)0.0032 (7)−0.0060 (7)
C10.0319 (10)0.0283 (10)0.0328 (12)0.0007 (8)−0.0094 (9)−0.0019 (8)
N10.0377 (11)0.0283 (9)0.0329 (11)0.0020 (8)−0.0050 (8)0.0013 (8)
C20.0487 (15)0.0478 (15)0.0337 (13)0.0005 (12)−0.0135 (11)−0.0072 (11)
C60.0421 (13)0.0286 (11)0.0394 (13)−0.0012 (9)−0.0137 (11)0.0025 (9)
C70.0512 (16)0.0462 (15)0.0356 (14)−0.0076 (12)−0.0154 (12)0.0092 (12)
C30.064 (2)0.0542 (19)0.0495 (18)−0.0019 (16)−0.0158 (16)−0.0233 (15)
C80.0562 (18)0.0559 (18)0.0300 (13)−0.0067 (14)−0.0044 (12)−0.0033 (12)
C90.0460 (15)0.0368 (13)0.0383 (14)0.0024 (11)0.0004 (11)−0.0071 (11)
C50.0574 (19)0.0280 (12)0.069 (2)0.0018 (12)−0.0237 (16)−0.0006 (13)
C40.062 (2)0.0364 (15)0.082 (3)0.0054 (14)−0.0164 (19)−0.0267 (17)
O100.0251 (7)0.0347 (8)0.0249 (7)−0.0022 (6)−0.0056 (6)−0.0095 (6)
O20.0398 (10)0.0339 (9)0.0312 (9)0.0008 (7)−0.0094 (8)0.0001 (7)
O30.0451 (11)0.0543 (12)0.0253 (9)0.0030 (9)−0.0129 (8)−0.0072 (8)
O40.0449 (12)0.0263 (9)0.091 (2)0.0085 (8)−0.0178 (12)−0.0164 (11)

Geometric parameters (Å, °)

Co1—O10i2.1064 (16)N1—H10.8600
Co1—O102.1064 (16)C2—C31.361 (5)
Co1—O1i2.1127 (18)C2—H20.9300
Co1—O12.1127 (18)C6—C71.402 (4)
Co1—O5i2.1159 (16)C6—C51.421 (4)
Co1—O52.1159 (16)C7—C81.362 (5)
P2—O91.4737 (17)C7—H70.9300
P2—O101.4748 (17)C3—C41.403 (6)
P2—O81.5963 (17)C3—H30.9300
P2—O71.6029 (16)C8—C91.377 (5)
P1—O61.4730 (18)C8—H80.9300
P1—O51.4779 (17)C9—H90.9300
P1—O8ii1.5833 (18)C5—C41.354 (6)
P1—O71.5913 (17)C5—H50.9300
O8—P1ii1.5833 (18)C4—H40.9300
O1—H110.830 (17)O2—H120.827 (17)
O1—H210.831 (17)O2—H220.825 (17)
C1—N11.372 (3)O3—H130.863 (17)
C1—C61.401 (4)O3—H230.875 (17)
C1—C21.402 (4)O4—H140.855 (18)
N1—C91.326 (4)O4—H240.855 (17)
O10i—Co1—O10180.00 (8)N1—C1—C2119.6 (2)
O10i—Co1—O1i90.99 (7)C6—C1—C2122.1 (3)
O10—Co1—O1i89.01 (7)C9—N1—C1122.4 (2)
O10i—Co1—O189.01 (7)C9—N1—H1118.8
O10—Co1—O190.99 (7)C1—N1—H1118.8
O1i—Co1—O1180.0C3—C2—C1118.3 (3)
O10i—Co1—O5i89.95 (6)C3—C2—H2120.8
O10—Co1—O5i90.05 (6)C1—C2—H2120.8
O1i—Co1—O5i86.22 (7)C1—C6—C7118.8 (3)
O1—Co1—O5i93.78 (7)C1—C6—C5117.5 (3)
O10i—Co1—O590.05 (6)C7—C6—C5123.7 (3)
O10—Co1—O589.95 (6)C8—C7—C6120.1 (3)
O1i—Co1—O593.78 (7)C8—C7—H7119.9
O1—Co1—O586.22 (7)C6—C7—H7119.9
O5i—Co1—O5180.0C2—C3—C4120.8 (3)
O9—P2—O10121.11 (11)C2—C3—H3119.6
O9—P2—O8105.29 (10)C4—C3—H3119.6
O10—P2—O8110.13 (10)C7—C8—C9119.8 (3)
O9—P2—O7108.09 (10)C7—C8—H8120.1
O10—P2—O7109.91 (9)C9—C8—H8120.1
O8—P2—O7100.23 (10)N1—C9—C8120.5 (3)
O6—P1—O5117.41 (11)N1—C9—H9119.7
O6—P1—O8ii109.43 (12)C8—C9—H9119.7
O5—P1—O8ii106.81 (10)C4—C5—C6119.9 (3)
O6—P1—O7106.60 (11)C4—C5—H5120.0
O5—P1—O7111.38 (9)C6—C5—H5120.0
O8ii—P1—O7104.47 (10)C5—C4—C3121.3 (3)
P1—O5—Co1130.02 (10)C5—C4—H4119.3
P1ii—O8—P2137.26 (12)C3—C4—H4119.3
P1—O7—P2134.40 (11)P2—O10—Co1131.90 (10)
Co1—O1—H11117 (2)H12—O2—H22113 (3)
Co1—O1—H21116 (3)H13—O3—H23102 (2)
H11—O1—H21110 (2)H14—O4—H24107 (3)
N1—C1—C6118.3 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.882.728 (3)171
O1—H11···O40.83 (3)1.98 (3)2.747 (3)154 (3)
O1—H21···O2iii0.84 (3)2.00 (3)2.841 (3)179 (4)
O2—H12···O3iv0.83 (3)1.85 (3)2.666 (3)168 (3)
O2—H22···O60.83 (3)1.95 (3)2.771 (3)172 (4)
O3—H13···O60.86 (2)1.95 (2)2.743 (3)152 (3)
O3—H23···O5v0.87 (3)2.02 (2)2.833 (3)154 (3)
O4—H14···O9vi0.86 (2)2.01 (2)2.824 (3)157 (4)
O4—H24···O9iii0.86 (3)2.06 (3)2.890 (3)163 (3)
C7—H7···O9vii0.932.593.459 (4)156
C9—H9···O30.932.543.080 (4)118
C9—H9···O10viii0.932.593.381 (3)143

Symmetry codes: (iii) x−1, y, z; (iv) −x+3, −y+1, −z; (v) −x+2, −y+1, −z; (vi) −x+1, −y+2, −z+1; (vii) −x+2, −y+2, −z; (viii) x+1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2272).

References

  • Blessing, R. H. (1986). Acta Cryst. B42, 613–621.
  • Brown, I. D. (1976). Acta Cryst. A32, 24–31.
  • Durif, A. (1995). In Crystal Chemistry of Condensed Phosphates New York: Plenum Press.
  • Enraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Feher, F. J. & Budzichowski, T. A. (1995). Polyhedron, 14, 3239–3253.
  • Guerrero, G., Mehring, M., Mutin, P. H., Dahan, F. & Vioux, A. (1999). J. Chem. Soc. Dalton Trans. pp. 1537–1538.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Ikotun, O. F., Ouellette, W., Lloret, F., Kruger, P. E., Julve, M. & Doyle, R. P. (2008). Eur. J. Inorg. Chem. pp. 2691–2697.
  • Lugmair, C. G. & Tilley, T. D. (1998). Inorg. Chem.37, 1821–1826.
  • Ondik, H. M. (1964). Acta Cryst.17, 1139–1145.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steiner, T. & Saenger, W. (1993). J. Am. Chem. Soc.115, 4540–4547.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography