PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o398.
Published online 2010 January 20. doi:  10.1107/S1600536810001534
PMCID: PMC2979725

4′-Formyl­biphenyl-4-yl acetate

Abstract

In the title compound, C15H12O3, the dihedral angle between the six-membered rings is 30.39 (1)°. The crystal packing is stabilized by inter­molecular C—H(...)O hydrogen bonds.

Related literature

For further synthetic details, see: Chakraborti & Gulhane (2003 [triangle]); Chamontin et al. (1999 [triangle]); Steglich & Höfle (1969 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o398-scheme1.jpg

Experimental

Crystal data

  • C15H12O3
  • M r = 240.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o398-efi1.jpg
  • a = 9.250 (6) Å
  • b = 7.499 (4) Å
  • c = 9.596 (6) Å
  • β = 113.695 (10)°
  • V = 609.5 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.18 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.984, T max = 0.991
  • 3288 measured reflections
  • 1290 independent reflections
  • 1077 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.091
  • S = 1.00
  • 1290 reflections
  • 164 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.09 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810001534/bg2320sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001534/bg2320Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Ludong University and the Students Research Fund of Ludong University.

supplementary crystallographic information

Comment

4'-formylbiphenyl-4-yl acetate is a derivative of biphenyl that contains two phenyl groups joined by a single covalent bond. However, rotation about the single bond in biphenyl may be sterically hindered and the equilibrium torsional angles in the variously substituted derivatives may be different. In the case of unsubstituted biphenyl, the equilibrium torsional angle is 44.4°. However, in the title compound its value is 30.39 (1)°, because conjugated effects in the molecule are strengthened by π-π conjugation (aldehyde group, oxygen group) as compared with unsubstituted biphenyl, and as result the two phenyl groups tend to be more coplanar.

The molecule of the title compound is illustrated in Fig. 1. The asymmetric unit contains two six-member rings and one acetate group. In the crystal structure there are no classic hydrogen bonds but there are non-classical intermolecular C—H···O hydrogen bonds (viz., C15—H15C···O3[-x,1/2+y,2-z],H···O: 2.41Å, C—H···O: 177°) which help in forming a three dimensional structure.

Experimental

4'-hydroxy-4-biphenylaldehyde (02) was prepared (Chamontin et al. 1999), starting from 4'-bromo-4-biphenol (01) which is commercially available, using the N-formylpiperidine as electrophilic agent. After 4'-hydroxy-4-biphenylaldehyde (02) was acetylated with the acetylating agent acetic anhydride, catalyzed by 4-(dimthylamino)pyridine (DMAP), the target material 4'-formylbiphenyl-4-ylacetate (B3) was obtained (Chakraborti et al. 2003; Steglich et al. 1969).

Product, yielding 53%. 1H NMR (400MHz,CDCl3, TMS) δ 10.0939 (s, 1H), δ 7.996–7.976 (d, 2H), δ 7.772–7.752(d, 2H), δ 7.688–7. 666 (d, 2H), δ 7.256–7. 235(d, 2H), 2.374 (s,3H); 13C NMR (CDCl3)δ191.79, 169.40, 151.03, 146.28, 137.46, 135.25, 130.29, 128.45, 127.64, 122.19,21.147; ESI-TOF Eaxct Mass for C15H12O3 [M+Na]+: calcd 263.0679, 264.0713, 265.0738, found 263.0401, 264.0444, 265.0743.

Refinement

All H atoms were positioned in calculated positions, with C—H distancesof 0.97 Å, and with Uiso~(H) = 1.2 or 1.5 Ueq~(C). In the abscense of significan anomalous effects, Friedel pairs were merged, thus giving rise to a poorer reflections to parameters ratio.

Figures

Fig. 1.
Displacement ellipsoid plot of (I) (50% probability level).

Crystal data

C15H12O3F(000) = 252
Mr = 240.25Dx = 1.309 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1236 reflections
a = 9.250 (6) Åθ = 2.3–23.9°
b = 7.499 (4) ŵ = 0.09 mm1
c = 9.596 (6) ÅT = 298 K
β = 113.695 (10)°Block, colourless
V = 609.5 (6) Å30.18 × 0.15 × 0.10 mm
Z = 2

Data collection

Bruker SMART APEX CCD-detector diffractometer1290 independent reflections
Radiation source: fine-focus sealed tube1077 reflections with I > 2σ(I)
graphiteRint = 0.019
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −11→11
Tmin = 0.984, Tmax = 0.991k = −7→9
3288 measured reflectionsl = −8→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0452P)2 + 0.0661P] where P = (Fo2 + 2Fc2)/3
1290 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.09 e Å3
1 restraintΔρmin = −0.12 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O2−0.0502 (2)0.8608 (3)0.7519 (2)0.0701 (5)
C80.2140 (3)0.8713 (3)0.4862 (3)0.0477 (5)
C40.2728 (3)0.7574 (3)0.2696 (3)0.0513 (6)
H40.18840.67890.24570.062*
C50.3071 (2)0.8734 (3)0.3918 (2)0.0473 (5)
C110.0414 (3)0.8599 (3)0.6654 (3)0.0560 (6)
C20.4874 (3)0.8714 (4)0.2161 (3)0.0554 (6)
C90.0550 (3)0.8248 (3)0.4255 (3)0.0542 (6)
H90.00520.79700.32260.065*
C130.2828 (3)0.9145 (3)0.6404 (3)0.0557 (6)
H130.38860.94770.68410.067*
C30.3610 (3)0.7561 (4)0.1831 (3)0.0560 (6)
H30.33550.67710.10190.067*
C10−0.0305 (3)0.8190 (4)0.5149 (3)0.0580 (6)
H10−0.13660.78730.47250.070*
C60.4340 (3)0.9888 (4)0.4230 (3)0.0604 (7)
H60.45931.06900.50340.073*
C10.5827 (3)0.8732 (5)0.1248 (4)0.0741 (8)
H10.66530.95460.15140.089*
C120.1971 (3)0.9091 (4)0.7295 (3)0.0620 (7)
H120.24460.93860.83210.074*
C14−0.0346 (3)0.7197 (4)0.8450 (3)0.0550 (6)
O30.0583 (2)0.6044 (3)0.8607 (2)0.0720 (5)
C70.5228 (3)0.9866 (4)0.3372 (3)0.0662 (7)
H70.60801.06400.36140.079*
C15−0.1467 (3)0.7346 (5)0.9211 (3)0.0768 (9)
H15A−0.14020.62900.97980.115*
H15B−0.25230.74780.84550.115*
H15C−0.11960.83670.98710.115*
O10.5613 (3)0.7773 (5)0.0187 (3)0.1034 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O20.0865 (12)0.0605 (11)0.0839 (12)0.0192 (11)0.0557 (11)0.0128 (11)
C80.0530 (12)0.0361 (11)0.0536 (13)−0.0002 (11)0.0210 (10)0.0025 (12)
C40.0482 (12)0.0508 (14)0.0534 (13)−0.0096 (11)0.0187 (10)−0.0039 (12)
C50.0485 (12)0.0398 (11)0.0506 (12)0.0013 (11)0.0168 (10)0.0055 (12)
C110.0675 (15)0.0435 (13)0.0675 (15)0.0122 (14)0.0380 (13)0.0117 (13)
C20.0494 (12)0.0603 (15)0.0592 (14)0.0015 (13)0.0244 (11)0.0081 (14)
C90.0576 (13)0.0523 (15)0.0524 (13)−0.0038 (12)0.0217 (11)0.0027 (11)
C130.0521 (13)0.0567 (16)0.0561 (14)0.0011 (11)0.0195 (11)−0.0020 (12)
C30.0566 (13)0.0593 (15)0.0522 (13)−0.0017 (12)0.0218 (11)−0.0029 (13)
C100.0558 (14)0.0557 (16)0.0657 (15)−0.0019 (12)0.0276 (12)0.0042 (13)
C60.0643 (15)0.0554 (15)0.0647 (15)−0.0155 (13)0.0291 (13)−0.0128 (14)
C10.0587 (15)0.091 (2)0.0785 (18)0.0027 (18)0.0339 (14)0.012 (2)
C120.0697 (16)0.0643 (18)0.0523 (13)0.0084 (13)0.0249 (13)−0.0027 (13)
C140.0675 (15)0.0529 (15)0.0496 (13)−0.0100 (13)0.0287 (12)−0.0101 (12)
O30.0852 (12)0.0607 (11)0.0787 (13)0.0094 (11)0.0420 (11)0.0143 (10)
C70.0590 (15)0.0645 (17)0.0779 (18)−0.0182 (15)0.0304 (14)−0.0030 (16)
C150.094 (2)0.078 (2)0.080 (2)−0.0186 (17)0.0573 (18)−0.0183 (17)
O10.0920 (15)0.143 (2)0.0995 (16)−0.0075 (17)0.0638 (14)−0.0223 (18)

Geometric parameters (Å, °)

O2—C141.355 (3)C13—C121.381 (4)
O2—C111.404 (3)C13—H130.9300
C8—C91.391 (3)C3—H30.9300
C8—C131.394 (3)C10—H100.9300
C8—C51.480 (3)C6—C71.378 (4)
C4—C31.378 (3)C6—H60.9300
C4—C51.391 (3)C1—O11.196 (4)
C4—H40.9300C1—H10.9300
C5—C61.390 (3)C12—H120.9300
C11—C101.360 (4)C14—O31.185 (3)
C11—C121.369 (4)C14—C151.493 (3)
C2—C71.377 (4)C7—H70.9300
C2—C31.385 (4)C15—H15A0.9600
C2—C11.472 (4)C15—H15B0.9600
C9—C101.382 (3)C15—H15C0.9600
C9—H90.9300
C14—O2—C11117.2 (2)C11—C10—C9119.6 (2)
C9—C8—C13117.3 (2)C11—C10—H10120.2
C9—C8—C5121.6 (2)C9—C10—H10120.2
C13—C8—C5121.1 (2)C7—C6—C5121.2 (2)
C3—C4—C5121.5 (2)C7—C6—H6119.4
C3—C4—H4119.2C5—C6—H6119.4
C5—C4—H4119.2O1—C1—C2124.6 (3)
C6—C5—C4117.3 (2)O1—C1—H1117.7
C6—C5—C8121.5 (2)C2—C1—H1117.7
C4—C5—C8121.2 (2)C11—C12—C13119.5 (2)
C10—C11—C12121.0 (2)C11—C12—H12120.3
C10—C11—O2118.3 (2)C13—C12—H12120.3
C12—C11—O2120.6 (2)O3—C14—O2122.2 (2)
C7—C2—C3118.5 (2)O3—C14—C15127.1 (3)
C7—C2—C1120.0 (3)O2—C14—C15110.7 (2)
C3—C2—C1121.5 (3)C6—C7—C2121.0 (2)
C10—C9—C8121.4 (2)C6—C7—H7119.5
C10—C9—H9119.3C2—C7—H7119.5
C8—C9—H9119.3C14—C15—H15A109.5
C12—C13—C8121.3 (2)C14—C15—H15B109.5
C12—C13—H13119.4H15A—C15—H15B109.5
C8—C13—H13119.4C14—C15—H15C109.5
C4—C3—C2120.5 (2)H15A—C15—H15C109.5
C4—C3—H3119.8H15B—C15—H15C109.5
C2—C3—H3119.8
C3—C4—C5—C60.2 (4)C12—C11—C10—C90.8 (4)
C3—C4—C5—C8−178.6 (2)O2—C11—C10—C9177.1 (2)
C9—C8—C5—C6150.4 (3)C8—C9—C10—C110.2 (4)
C13—C8—C5—C6−30.2 (3)C4—C5—C6—C7−0.7 (4)
C9—C8—C5—C4−30.8 (3)C8—C5—C6—C7178.2 (2)
C13—C8—C5—C4148.6 (2)C7—C2—C1—O1179.4 (3)
C14—O2—C11—C10103.6 (3)C3—C2—C1—O1−0.8 (5)
C14—O2—C11—C12−80.1 (3)C10—C11—C12—C13−1.0 (4)
C13—C8—C9—C10−1.0 (4)O2—C11—C12—C13−177.2 (3)
C5—C8—C9—C10178.5 (2)C8—C13—C12—C110.2 (4)
C9—C8—C13—C120.8 (4)C11—O2—C14—O34.2 (4)
C5—C8—C13—C12−178.6 (2)C11—O2—C14—C15−176.4 (2)
C5—C4—C3—C20.0 (4)C5—C6—C7—C20.9 (4)
C7—C2—C3—C40.2 (4)C3—C2—C7—C6−0.7 (4)
C1—C2—C3—C4−179.6 (3)C1—C2—C7—C6179.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15C···O3i0.962.413.372 (5)177

Symmetry codes: (i) −x, y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2320).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chakraborti, A. K. & Gulhane, R. (2003). Tetrahedron Lett 44, 3521–3525.
  • Chamontin, K., Lokshin, V., Rossollin, V., Samat, A. & Guglielmetti, R. (1999). Tetrahedron, 55, 5821–5830.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steglich, W. & Höfle, G. (1969). Angew. Chem. Int. Ed. Engl.8, 981–981.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography