PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o404.
Published online 2010 January 20. doi:  10.1107/S1600536810001704
PMCID: PMC2979716

1-(1-Carboxy­methyl-1,4-anhydro-2,3-O-isopropyl­idene-α-d-erythrofuranos­yl)thymine

Abstract

X-Ray crystallography unequivocally determined the stereochemistry of the thymine base in the title compound, C14H18N2O7. The absolute stereochemistry was determined from the use of d-ribose as the starting material. There are two independent mol­ecules in the asymmetric unit (Z′ = 2) which exist as N—H(...)O hydrogen-bonded pairs in the crystal structure.

Related literature

The title compound was obtained during studies on the synthesis of the 5-carbon analogue of psicofuran­ine, a naturally occurring nucleoside. For related literature on psicofuran­ine, see: Schroeder & Hoeksema (1959 [triangle]); Smith et al. (1973 [triangle]); Garrett (1960 [triangle]). For anomeric bromination see: Probert et al. (2005 [triangle]); Smith et al. (1999 [triangle]). For the extiction correction, see: Larson (1970 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o404-scheme1.jpg

Experimental

Crystal data

  • C14H18N2O7
  • M r = 326.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o404-efi1.jpg
  • a = 7.8937 (5) Å
  • b = 13.3471 (10) Å
  • c = 14.9208 (10) Å
  • β = 103.565 (4)°
  • V = 1528.17 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 150 K
  • 0.40 × 0.20 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997 [triangle]) T min = 0.83, T max = 1.00
  • 9120 measured reflections
  • 3090 independent reflections
  • 2453 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.114
  • S = 0.95
  • 3090 reflections
  • 416 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: COLLECT (Nonius, 2001 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: CAMERON (Watkin et al., 1996 [triangle]); software used to prepare material for publication: CRYSTALS.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001704/lh2979sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001704/lh2979Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like to thank the Chemical Crystallography department and ALT at Oxford University for use of the diffractometers.

supplementary crystallographic information

Comment

Nucleosides are a powerful class of anti-viral and anti-bacterial agents. Psicofuranine 1 (Fig. 1) is a naturally occurring nucleoside with a branch at the anomeric position of the sugar (Schroeder & Hoeksema, 1959). It has potent anti-bacterial and anti-tumour activity but is cardiotoxic in man (Smith et al., 1973). Psicofuranine is also unstable in acidic and basic conditions with the N-glycosidic bond readily undergoing hydrolytic cleavage (Garrett, 1960). During studies on the synthesis of the 5-carbon analogue of psicofuranine 2 the ester 4 was synthesized. Anomeric radical bromination (Smith et al., 1999) gave rise to a single isolable bromide 5 (Probert et al., 2005) which on displacement with silylated thymine gave a single nucleoside product. The stereochemistry at the anomeric position of the sugar was firmly established by X-ray crystallography and the structure was confirmed as 6 in which the thymine is in the α rather than the desired β position.

There are two crystallographically distinct molecules in the asymmetric unit which are related by a pseudo 2-fold rotation axis (Fig 2). When the two molecules are mapped they show good overlap (Fig. 3) with RMS deviations of 0.1055 on the positions, 0.082 for the bonds and 3.8892 for the torsion angles. These two molecules form hydrogen bonded pairs in the crystal structure (Fig. 4, Fig. 5). In both cases the central nitrogen (N3, N26) between the two carbonyls of the thymine acts as the donor but hydrogen bonds are formed to different carbonyls of the two thymine rings. The absolute stereochemistry was determined from the use of D-ribose as the starting material. Only classical hydrogen bonding was considered.

Experimental

The title compound was recrystallized by diffusion from a mixture of methanol and acetone: m.p. 457–458 K; [α]D25 -235.2 (c, 0.84 in CHCl3).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the use of D-ribose as the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.
Synthetic Scheme
Fig. 2.
The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
Fig. 3.
Overlay of the two molecules in the asymmetric unit.
Fig. 4.
Hydrogen bonded dimer repeating unit. Hydrogen bonds are shown by dotted lines.
Fig. 5.
Packing diagram projected along the a-axis. Hydrogen bonds are shown by dotted lines.

Crystal data

C14H18N2O7F(000) = 688
Mr = 326.31Dx = 1.418 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2763 reflections
a = 7.8937 (5) Åθ = 5–26°
b = 13.3471 (10) ŵ = 0.12 mm1
c = 14.9208 (10) ÅT = 150 K
β = 103.565 (4)°Plate, colourless
V = 1528.17 (18) Å30.40 × 0.20 × 0.03 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer2453 reflections with I > 2σ(I)
graphiteRint = 0.065
ω scansθmax = 26.1°, θmin = 5.2°
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997)h = −9→9
Tmin = 0.83, Tmax = 1.00k = −14→16
9120 measured reflectionsl = −18→18
3090 independent reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.04P)2 + 0.5P], where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.0002
S = 0.95Δρmax = 0.34 e Å3
3090 reflectionsΔρmin = −0.31 e Å3
416 parametersExtinction correction: Larson (1970), Equation 22
1 restraintExtinction coefficient: 590 (70)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2931 (4)0.3816 (2)0.81712 (19)0.0363
C20.3274 (5)0.3347 (3)0.8903 (3)0.0308
N30.3044 (5)0.3728 (3)0.9715 (2)0.0346
C40.3343 (6)0.3220 (3)1.0559 (3)0.0348
O50.3097 (4)0.3655 (2)1.1245 (2)0.0414
C60.3964 (5)0.2203 (3)1.0536 (3)0.0336
C70.4220 (5)0.1836 (3)0.9739 (3)0.0321
N80.3912 (4)0.2388 (2)0.8940 (2)0.0290
C90.4110 (5)0.1982 (3)0.8058 (3)0.0292
O100.5057 (4)0.10739 (19)0.82495 (18)0.0320
C110.4357 (5)0.0365 (3)0.7525 (3)0.0348
C120.2451 (5)0.0597 (3)0.7235 (3)0.0343
C130.2338 (5)0.1728 (3)0.7383 (3)0.0320
O140.0903 (4)0.1860 (2)0.7798 (2)0.0374
C150.0163 (5)0.0881 (3)0.7891 (3)0.0356
O160.1544 (4)0.0203 (2)0.7876 (2)0.0362
C17−0.1363 (6)0.0703 (3)0.7081 (3)0.0455
C18−0.0325 (6)0.0826 (4)0.8799 (3)0.0469
C190.5238 (5)0.2679 (3)0.7618 (3)0.0324
O200.5064 (4)0.2774 (2)0.6798 (2)0.0417
O210.6543 (4)0.3076 (2)0.8269 (2)0.0380
C220.7785 (6)0.3686 (4)0.7933 (3)0.0443
C230.4312 (7)0.1600 (4)1.1418 (3)0.0465
O240.2166 (4)0.5799 (2)0.93916 (19)0.0374
C250.1273 (5)0.6136 (3)0.8657 (3)0.0313
N260.0825 (5)0.5521 (2)0.7891 (2)0.0323
C27−0.0261 (5)0.5758 (3)0.7053 (3)0.0310
O28−0.0626 (4)0.5168 (2)0.64081 (19)0.0375
N29−0.0943 (5)0.6715 (2)0.6997 (2)0.0306
C30−0.0454 (5)0.7396 (3)0.7711 (3)0.0326
C310.0618 (5)0.7156 (3)0.8524 (3)0.0305
C320.1154 (7)0.7889 (3)0.9308 (3)0.0461
C33−0.2093 (5)0.6978 (3)0.6101 (3)0.0305
O34−0.2864 (4)0.7906 (2)0.62183 (18)0.0339
C35−0.3007 (6)0.8493 (3)0.5385 (3)0.0351
C36−0.1471 (5)0.8204 (3)0.5013 (3)0.0333
C37−0.1111 (5)0.7103 (3)0.5318 (3)0.0339
O380.0732 (4)0.7037 (2)0.5655 (2)0.0364
C390.1460 (6)0.7998 (3)0.5517 (3)0.0354
O400.0075 (4)0.8694 (2)0.5505 (2)0.0368
C410.2020 (6)0.8002 (4)0.4618 (3)0.0415
C420.2914 (6)0.8224 (4)0.6342 (3)0.0473
C43−0.3599 (6)0.6221 (3)0.5830 (3)0.0347
O44−0.4208 (4)0.5954 (2)0.65563 (19)0.0351
C45−0.5767 (6)0.5327 (3)0.6364 (3)0.0430
O46−0.4246 (4)0.5982 (2)0.5041 (2)0.0448
H710.46240.11810.97220.0371*
H1110.4513−0.03160.77640.0408*
H1120.49500.04480.70260.0412*
H1210.19120.03720.65950.0412*
H1310.21630.21110.68010.0380*
H172−0.19030.00600.71680.0643*
H173−0.09630.07020.65140.0642*
H171−0.22320.12350.70660.0639*
H181−0.07800.01610.88710.0748*
H1830.07040.09510.92910.0752*
H182−0.12130.13390.88090.0750*
H2220.85690.39990.84550.0703*
H2210.84440.32870.75980.0705*
H2230.71830.42100.75280.0699*
H2320.46440.09211.12920.0681*
H2330.32760.15831.16720.0683*
H2310.52920.19001.18630.0683*
H301−0.09220.80510.76270.0356*
H3230.06890.85500.91140.0654*
H3220.24250.79180.94900.0654*
H3210.06970.76710.98300.0652*
H351−0.40910.83240.49360.0382*
H352−0.29920.92120.55380.0381*
H361−0.16740.82830.43350.0381*
H371−0.15350.66320.48070.0422*
H4120.24480.86680.45220.0641*
H4110.29340.74990.46460.0643*
H4130.10260.78360.41270.0639*
H4210.34810.88460.62560.0668*
H4220.37380.76730.64280.0670*
H4230.24210.82760.68790.0672*
H453−0.61760.52380.69290.0613*
H452−0.54960.46740.61410.0609*
H451−0.66730.56540.58970.0615*
H2610.13020.49190.79470.0383*
H310.26940.43530.97070.0413*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0473 (17)0.0277 (14)0.0351 (16)0.0081 (13)0.0120 (14)0.0074 (13)
C20.034 (2)0.0255 (19)0.033 (2)0.0003 (17)0.0092 (18)0.0010 (18)
N30.0444 (19)0.0259 (15)0.0338 (19)0.0032 (16)0.0095 (16)−0.0002 (15)
C40.034 (2)0.036 (2)0.035 (2)−0.0036 (19)0.0083 (19)−0.0014 (19)
O50.0476 (18)0.0436 (17)0.0347 (16)−0.0022 (16)0.0128 (14)−0.0064 (15)
C60.036 (2)0.035 (2)0.030 (2)−0.0005 (19)0.0074 (18)0.0005 (18)
C70.031 (2)0.032 (2)0.032 (2)0.0015 (17)0.0062 (18)0.0057 (17)
N80.0345 (17)0.0266 (16)0.0267 (17)0.0057 (14)0.0090 (14)0.0010 (13)
C90.034 (2)0.0221 (18)0.031 (2)0.0012 (17)0.0079 (18)0.0014 (16)
O100.0344 (14)0.0229 (13)0.0370 (15)0.0019 (12)0.0052 (12)−0.0029 (12)
C110.036 (2)0.029 (2)0.040 (2)−0.0002 (19)0.0102 (19)−0.0074 (19)
C120.035 (2)0.031 (2)0.037 (2)0.0000 (18)0.0094 (19)−0.0027 (18)
C130.037 (2)0.028 (2)0.031 (2)0.0029 (18)0.0078 (18)0.0004 (17)
O140.0329 (16)0.0322 (15)0.0482 (18)0.0012 (13)0.0122 (14)−0.0035 (13)
C150.032 (2)0.0252 (19)0.048 (3)−0.0016 (18)0.0082 (19)−0.0045 (19)
O160.0344 (16)0.0272 (14)0.0482 (18)0.0020 (13)0.0122 (14)0.0032 (13)
C170.033 (2)0.043 (3)0.059 (3)−0.002 (2)0.008 (2)−0.007 (2)
C180.044 (3)0.043 (2)0.057 (3)0.001 (2)0.018 (2)0.001 (2)
C190.032 (2)0.0254 (19)0.041 (2)0.0035 (18)0.010 (2)0.0018 (18)
O200.0489 (19)0.0462 (18)0.0318 (16)−0.0022 (15)0.0131 (15)0.0039 (14)
O210.0370 (16)0.0353 (15)0.0405 (16)−0.0056 (14)0.0070 (14)0.0041 (13)
C220.034 (2)0.041 (2)0.059 (3)−0.009 (2)0.013 (2)0.010 (2)
C230.055 (3)0.049 (3)0.036 (2)0.009 (2)0.011 (2)0.008 (2)
O240.0423 (17)0.0327 (15)0.0333 (15)0.0038 (14)0.0012 (14)0.0006 (13)
C250.029 (2)0.031 (2)0.033 (2)−0.0001 (18)0.0057 (18)0.0009 (18)
N260.0386 (19)0.0253 (16)0.0315 (19)0.0029 (15)0.0055 (16)−0.0003 (14)
C270.036 (2)0.0234 (18)0.034 (2)−0.0007 (17)0.0077 (18)−0.0008 (17)
O280.0499 (18)0.0265 (14)0.0350 (16)0.0015 (14)0.0078 (14)−0.0022 (13)
N290.0365 (19)0.0266 (16)0.0277 (17)0.0020 (15)0.0054 (15)−0.0005 (14)
C300.037 (2)0.0256 (19)0.034 (2)0.0014 (17)0.0056 (19)−0.0034 (17)
C310.035 (2)0.0270 (19)0.029 (2)0.0006 (18)0.0081 (18)−0.0037 (17)
C320.056 (3)0.033 (2)0.043 (3)0.004 (2)−0.002 (2)−0.007 (2)
C330.038 (2)0.0236 (18)0.030 (2)0.0053 (17)0.0075 (18)0.0003 (16)
O340.0431 (17)0.0279 (14)0.0313 (14)0.0063 (13)0.0101 (14)0.0035 (12)
C350.041 (2)0.029 (2)0.033 (2)0.0036 (19)0.0027 (19)0.0061 (17)
C360.035 (2)0.030 (2)0.031 (2)0.0022 (18)0.0020 (18)0.0027 (17)
C370.040 (2)0.0294 (19)0.032 (2)−0.0002 (19)0.0082 (19)−0.0040 (18)
O380.0371 (16)0.0274 (14)0.0451 (17)0.0044 (13)0.0107 (14)0.0032 (13)
C390.043 (3)0.0258 (19)0.039 (2)0.0027 (19)0.013 (2)0.0005 (18)
O400.0356 (15)0.0291 (13)0.0456 (17)0.0016 (13)0.0092 (14)−0.0033 (13)
C410.041 (3)0.046 (2)0.040 (2)−0.002 (2)0.016 (2)0.002 (2)
C420.041 (3)0.050 (3)0.048 (3)0.004 (2)0.007 (2)−0.009 (2)
C430.038 (2)0.030 (2)0.036 (2)0.0048 (19)0.008 (2)−0.0004 (18)
O440.0372 (16)0.0325 (15)0.0353 (15)−0.0068 (13)0.0081 (13)−0.0031 (13)
C450.045 (3)0.033 (2)0.051 (3)−0.011 (2)0.012 (2)−0.001 (2)
O460.0479 (18)0.0505 (18)0.0323 (15)−0.0102 (16)0.0022 (14)−0.0051 (16)

Geometric parameters (Å, °)

O1—C21.233 (5)O24—C251.240 (5)
C2—N31.365 (5)C25—N261.384 (5)
C2—N81.371 (5)C25—C311.453 (5)
N3—C41.401 (5)N26—C271.377 (5)
N3—H310.877N26—H2610.882
C4—O51.230 (5)C27—O281.224 (5)
C4—C61.448 (6)C27—N291.380 (5)
C6—C71.345 (6)N29—C301.385 (5)
C6—C231.512 (6)N29—C331.471 (5)
C7—N81.374 (5)C30—C311.346 (5)
C7—H710.933C30—H3010.946
N8—C91.464 (5)C31—C321.507 (6)
C9—O101.418 (5)C32—H3230.973
C9—C131.557 (6)C32—H3220.977
C9—C191.537 (5)C32—H3210.977
O10—C111.445 (5)C33—O341.408 (5)
C11—C121.497 (6)C33—C371.555 (5)
C11—H1110.974C33—C431.541 (6)
C11—H1120.974O34—C351.452 (5)
C12—C131.532 (5)C35—C361.497 (6)
C12—O161.423 (5)C35—H3510.981
C12—H1210.996C35—H3520.986
C13—O141.424 (5)C36—C371.544 (6)
C13—H1310.988C36—O401.427 (5)
O14—C151.452 (5)C36—H3610.992
C15—O161.420 (5)C37—O381.426 (5)
C15—C171.512 (6)C37—H3710.985
C15—C181.496 (6)O38—C391.440 (5)
C17—H1720.981C39—O401.431 (5)
C17—H1730.969C39—C411.507 (6)
C17—H1710.984C39—C421.504 (6)
C18—H1810.974C41—H4120.974
C18—H1830.973C41—H4110.979
C18—H1820.982C41—H4130.965
C19—O201.205 (5)C42—H4210.966
C19—O211.348 (5)C42—H4220.971
O21—C221.451 (5)C42—H4230.972
C22—H2220.969C43—O441.333 (5)
C22—H2210.962C43—O461.210 (5)
C22—H2230.972O44—C451.460 (5)
C23—H2320.974C45—H4530.979
C23—H2330.979C45—H4520.975
C23—H2310.979C45—H4510.977
O1—C2—N3123.3 (4)O24—C25—N26119.7 (4)
O1—C2—N8120.7 (3)O24—C25—C31124.8 (4)
N3—C2—N8115.9 (3)N26—C25—C31115.5 (3)
C2—N3—C4126.0 (3)C25—N26—C27126.7 (3)
C2—N3—H31116.7C25—N26—H261116.2
C4—N3—H31117.3C27—N26—H261117.2
N3—C4—O5119.6 (4)N26—C27—O28123.2 (3)
N3—C4—C6114.8 (4)N26—C27—N29114.8 (3)
O5—C4—C6125.6 (4)O28—C27—N29122.0 (4)
C4—C6—C7119.0 (4)C27—N29—C30121.7 (3)
C4—C6—C23118.2 (4)C27—N29—C33115.2 (3)
C7—C6—C23122.8 (4)C30—N29—C33122.9 (3)
C6—C7—N8122.6 (4)N29—C30—C31122.7 (4)
C6—C7—H71119.2N29—C30—H301118.4
N8—C7—H71118.2C31—C30—H301118.9
C7—N8—C2121.6 (3)C25—C31—C30118.3 (4)
C7—N8—C9123.1 (3)C25—C31—C32118.5 (4)
C2—N8—C9115.2 (3)C30—C31—C32123.2 (4)
N8—C9—O10107.4 (3)C31—C32—H323110.0
N8—C9—C13113.1 (3)C31—C32—H322108.9
O10—C9—C13107.2 (3)H323—C32—H322109.8
N8—C9—C19110.8 (3)C31—C32—H321109.6
O10—C9—C19105.8 (3)H323—C32—H321108.8
C13—C9—C19112.2 (3)H322—C32—H321109.7
C9—O10—C11108.5 (3)N29—C33—O34106.9 (3)
O10—C11—C12105.3 (3)N29—C33—C37113.4 (3)
O10—C11—H111110.1O34—C33—C37107.8 (3)
C12—C11—H111109.3N29—C33—C43110.8 (3)
O10—C11—H112109.2O34—C33—C43106.3 (3)
C12—C11—H112112.7C37—C33—C43111.2 (3)
H111—C11—H112110.1C33—O34—C35108.5 (3)
C11—C12—C13104.5 (3)O34—C35—C36105.7 (3)
C11—C12—O16111.1 (3)O34—C35—H351109.9
C13—C12—O16102.2 (3)C36—C35—H351109.9
C11—C12—H121112.9O34—C35—H352109.4
C13—C12—H121114.1C36—C35—H352111.7
O16—C12—H121111.4H351—C35—H352110.1
C12—C13—C9103.5 (3)C35—C36—C37104.2 (3)
C12—C13—O14105.3 (3)C35—C36—O40111.1 (3)
C9—C13—O14112.2 (3)C37—C36—O40102.1 (3)
C12—C13—H131112.6C35—C36—H361113.5
C9—C13—H131112.0C37—C36—H361112.1
O14—C13—H131110.9O40—C36—H361112.9
C13—O14—C15108.0 (3)C36—C37—C33103.5 (3)
O14—C15—O16104.2 (3)C36—C37—O38105.3 (3)
O14—C15—C17109.1 (3)C33—C37—O38112.1 (3)
O16—C15—C17111.0 (3)C36—C37—H371111.9
O14—C15—C18109.0 (3)C33—C37—H371112.0
O16—C15—C18110.2 (4)O38—C37—H371111.5
C17—C15—C18113.0 (4)C37—O38—C39107.7 (3)
C12—O16—C15106.6 (3)O38—C39—O40104.5 (3)
C15—C17—H172108.7O38—C39—C41109.9 (3)
C15—C17—H173109.6O40—C39—C41111.7 (3)
H172—C17—H173110.8O38—C39—C42108.4 (4)
C15—C17—H171109.0O40—C39—C42108.3 (3)
H172—C17—H171108.2C41—C39—C42113.7 (4)
H173—C17—H171110.5C39—O40—C36105.5 (3)
C15—C18—H181108.9C39—C41—H412108.6
C15—C18—H183109.1C39—C41—H411109.1
H181—C18—H183109.7H412—C41—H411110.7
C15—C18—H182108.4C39—C41—H413108.6
H181—C18—H182110.6H412—C41—H413110.2
H183—C18—H182110.0H411—C41—H413109.6
C9—C19—O20123.9 (4)C39—C42—H421110.6
C9—C19—O21110.5 (3)C39—C42—H422108.4
O20—C19—O21125.2 (4)H421—C42—H422110.6
C19—O21—C22115.8 (3)C39—C42—H423108.2
O21—C22—H222108.7H421—C42—H423109.6
O21—C22—H221111.1H422—C42—H423109.4
H222—C22—H221109.6C33—C43—O44111.4 (3)
O21—C22—H223110.3C33—C43—O46123.5 (4)
H222—C22—H223108.4O44—C43—O46124.8 (4)
H221—C22—H223108.7C43—O44—C45116.2 (3)
C6—C23—H232109.2O44—C45—H453109.5
C6—C23—H233110.6O44—C45—H452109.7
H232—C23—H233109.9H453—C45—H452109.2
C6—C23—H231109.0O44—C45—H451109.1
H232—C23—H231107.9H453—C45—H451109.6
H233—C23—H231110.3H452—C45—H451109.8

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H111···O5i0.972.523.301 (6)138
N26—H261···O10.881.932.791 (6)164
N3—H31···O240.882.012.863 (6)165

Symmetry codes: (i) −x+1, y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2979).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Garrett, E. R. (1960). J. Am. Chem. Soc.82, 827–832.
  • Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
  • Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Probert, M. R., Watkin, D. J., Stewart, A. J., Storer, R. & Fleet, G. W. J. (2005). Acta Cryst. E61, o1718–o1720.
  • Schroeder, W. & Hoeksema, H. (1959). J. Am. Chem. Soc.81, 1767–1768.
  • Smith, M. D., Long, D. D., Martín, A., Campbell, N., Blériot, Y. & Fleet, G. W. J. (1999). Synlett, 7, 1151–1154.
  • Smith, C. G., Poutsiaka, J. W. & Schreiber, E. C. (1973). J. Int. Med. Res.1, 489–503.
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography