PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m199.
Published online 2010 January 23. doi:  10.1107/S1600536810002229
PMCID: PMC2979712

Poly[[bis­(μ2-4,4′-bipyridine)[μ2-(2,4-dichloro­phen­oxy)acetato]copper(I)] nitrate]

Abstract

The title compound, {[Cu2(C8H5Cl2O3)(C10H8N2)2]NO3}n was prepared by reacting copper(II) nitrate with 4,4′-bipyridine (4,4′-bipy) and (2,4-dichloro­phen­oxy)acetic acid under solvothermal conditions. Each of two copper(I) atoms in the asymmetric unit is three-coordinated by two N atoms from two 4,4′-bipy ligands and one O atom from the (2,4-dichloro­phen­oxy)acetate ligand. As both ligands act as bridging ligands, a double-stranded chain structure is observed.

Related literature

For coordination polymers incorporating either 4,4′bipy or phenoxy­acetato ligands and Cu(I) or Cu(II), see: Biswas et al. (2007 [triangle]); Bourne & Moitsheki (2007 [triangle]); Huang et al. (2008 [triangle]); Mo et al. (2009 [triangle]); Smith et al. (1981 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m199-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C8H5Cl2O3)(C10H8N2)2]NO3
  • M r = 721.5
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m199-efi2.jpg
  • a = 10.598 (2) Å
  • b = 18.552 (3) Å
  • c = 15.212 (3) Å
  • β = 108.835 (2)°
  • V = 2830.9 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.74 mm−1
  • T = 296 K
  • 0.15 × 0.13 × 0.08 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.883, T max = 0.935
  • 14129 measured reflections
  • 5085 independent reflections
  • 3787 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.143
  • S = 1.04
  • 5085 reflections
  • 388 parameters
  • H-atom parameters constrained
  • Δρmax = 0.89 e Å−3
  • Δρmin = −0.68 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002229/im2172sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002229/im2172Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge South China Normal University for supporting this work.

supplementary crystallographic information

Comment

The design and synthesis of inorganic-organic composite coordination polymers exhibiting novel structures and properties is an intensively studied field of chemical research. 4,4'-bipyridine is a ligand that is particularly suited for constructing frameworks that possess hydrophobic pores and channels with potentially useful inclusion properties, including size and shape specificity (Bourne & Moitsheki, 2007; Huang et al., 2008; Mo et al., 2009; Biswas et al., 2007). 2,4-Dichlorophenoxyacetato ligands have been described to act as bridging in ligands in a typical Cu(II) paddlewheel complex (Smith et al., 1981).

The title compound (Fig. 1) was prepared from copper(II) nitrate, 4,4'-bipyridine (4,4'-bipy) and 2,4-dichlorophenoxyacetic acid under solvothermal conditions with ethanol most probably acting as the reducing agent for copper(II). A rufous colored block shaped crystal of the resulting copper(I) complex with a 2,4-dichlorophenoxyacetato ligand was characterized by single-crystal X-ray analysis. It reveals that each of two copper(I) centers is three-coordinated by two N atoms from two 4,4'-bipy ligands and one O atom from a bridging 2,4-dichlorophenoxyacetato ligand. The copper(I) coordination units are additionally connected by bridging 4,4'-bipy ligands, generating a one-dimensional polymeric chain strurcture (Fig. 2). A doubly stranded chain is observed due to the coordination of the copper(I) centers to one 2,4-dichlorophenoxyacetato ligand.

Experimental

A mixture of Cu(NO3)2 × 5 H2O (0.121 g, 0.44 mmol), 4,4'-bipyridine × 2 H2O (0.096 g, 0.5 mmol) and 2,4-dichlorophenoxyacetic acid (0.22 g, 1 mmol) in 8 ml of an ethanol/H2O mixture (v/v 1/7) was stirred vigorously for 10 min and then sealed in a 25 ml teflon-lined stainless-steel autoclave. The autoclave was heated to 403 K for 2 days and was then slowly cooled to room temperature with a rate of 6 K/h. The product was collected by filtration, washed with water and air-dried. Rufous block shaped crystals suitable for X-ray analysis were obtained in ca 26.8% yield based on Cu.

Refinement

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to carbon were placed in geometrically idealized positions and refined using a riding modelwith Uiso(H) = 1.2 Ueq(C) for H atoms of the aromatic rings.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing displacement ellipsoids at 50% probability for non-H atoms. Symmetry code: i 1 + x, 0.5 - y, 1/2 + z.
Fig. 2.
A view of the one-dimensional polymeric chain structure of the title compound. Hydrogen atoms are omitted for clarity.

Crystal data

[Cu2(C8H5Cl2O3)(C10H8N2)2]NO3F(000) = 1456
Mr = 721.5Dx = 1.693 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5085 reflections
a = 10.598 (2) Åθ = 1.8–25.2°
b = 18.552 (3) ŵ = 1.74 mm1
c = 15.212 (3) ÅT = 296 K
β = 108.835 (2)°Block, rufous
V = 2830.9 (8) Å30.15 × 0.13 × 0.08 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer5085 independent reflections
Radiation source: fine-focus sealed tube3787 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scanθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.883, Tmax = 0.935k = −19→22
14129 measured reflectionsl = −16→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.068P)2 + 4.0523P] where P = (Fo2 + 2Fc2)/3
5085 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = −0.68 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.29363 (5)0.27588 (3)1.15749 (4)0.04390 (19)
Cu20.48636 (5)0.28270 (3)1.03403 (4)0.04604 (19)
N30.3225 (3)0.2599 (2)0.9378 (3)0.0444 (9)
C220.0663 (4)0.2425 (2)0.8069 (3)0.0394 (9)
C13−0.0770 (4)0.1880 (2)1.0032 (3)0.0499 (12)
H13−0.11480.14220.99280.060*
C50.1398 (5)0.5119 (2)1.2023 (4)0.0498 (11)
C12−0.1511 (4)0.2477 (2)0.9594 (3)0.0380 (9)
C240.2591 (4)0.3141 (3)0.8824 (3)0.0466 (11)
H240.30190.35840.88820.056*
C100.0413 (4)0.3181 (2)1.0374 (3)0.0451 (11)
H100.08150.36321.04860.054*
C11−0.0874 (4)0.3135 (2)0.9796 (3)0.0441 (10)
H11−0.13270.35530.95350.053*
C140.0513 (4)0.1966 (2)1.0613 (3)0.0495 (12)
H140.09790.15591.09000.059*
C200.2591 (5)0.1964 (3)0.9247 (4)0.0559 (13)
H200.30240.15710.95960.067*
C210.1331 (4)0.1861 (3)0.8623 (3)0.0513 (12)
H210.09280.14110.85750.062*
C40.2570 (5)0.5161 (2)1.1810 (4)0.0558 (13)
C30.3775 (6)0.5171 (3)1.2524 (5)0.0752 (17)
H30.45690.52011.23900.090*
C70.3548 (5)0.5004 (3)1.0594 (4)0.0619 (14)
H7A0.43400.52631.09560.074*
H7B0.33640.51350.99470.074*
C90.2614 (9)0.5098 (3)1.3627 (4)0.086 (2)
C60.1390 (6)0.5089 (3)1.2928 (4)0.0682 (15)
H60.05960.50631.30630.082*
C20.3796 (8)0.5138 (3)1.3432 (5)0.091 (2)
H20.46040.51431.39130.110*
N10.1127 (3)0.26020 (19)1.0789 (2)0.0387 (8)
C80.3819 (4)0.4199 (2)1.0702 (3)0.0429 (10)
O20.3150 (3)0.38364 (16)1.1069 (2)0.0532 (8)
O10.2440 (3)0.52203 (18)1.0888 (3)0.0606 (9)
Cl2−0.01198 (13)0.51063 (8)1.11418 (11)0.0687 (4)
Cl10.2599 (3)0.50305 (12)1.47790 (13)0.1398 (10)
O30.4707 (3)0.39830 (17)1.0396 (2)0.0554 (9)
N60.2506 (5)0.4773 (4)0.7132 (5)0.0851 (16)
C230.1347 (4)0.3077 (2)0.8176 (3)0.0455 (10)
H230.09600.34700.78080.055*
C25−0.0720 (4)0.2359 (2)0.7422 (3)0.0376 (9)
C15−0.2888 (4)0.2414 (2)0.8933 (3)0.0357 (9)
C26−0.1299 (4)0.1708 (2)0.7098 (3)0.0484 (11)
H26−0.08170.12840.72820.058*
C19−0.3701 (4)0.3011 (2)0.8646 (3)0.0473 (11)
H19−0.34150.34580.89150.057*
C16−0.3419 (4)0.1766 (2)0.8556 (3)0.0469 (11)
H16−0.29360.13430.87460.056*
C29−0.1522 (4)0.2960 (2)0.7132 (4)0.0563 (13)
H29−0.11930.34140.73480.068*
C18−0.4926 (4)0.2953 (2)0.7970 (3)0.0475 (11)
H18−0.54330.33680.77790.057*
C17−0.4666 (4)0.1739 (2)0.7894 (3)0.0505 (12)
H17−0.50020.12920.76570.061*
C27−0.2593 (4)0.1678 (2)0.6498 (3)0.0512 (12)
H27−0.29590.12290.62920.061*
C28−0.2795 (5)0.2893 (2)0.6530 (4)0.0547 (13)
H28−0.32990.33090.63430.066*
N2−0.5420 (3)0.23224 (18)0.7575 (2)0.0386 (8)
N4−0.3348 (3)0.22657 (18)0.6199 (3)0.0413 (8)
O60.2775 (8)0.4203 (3)0.6898 (5)0.161 (3)
O50.1538 (8)0.5055 (6)0.6659 (6)0.229 (5)
O40.3168 (8)0.5019 (6)0.7763 (9)0.282 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0233 (3)0.0560 (4)0.0418 (3)−0.0006 (2)−0.0041 (2)0.0028 (2)
Cu20.0269 (3)0.0546 (4)0.0474 (4)0.0019 (2)−0.0008 (2)−0.0023 (3)
N30.0290 (18)0.051 (2)0.048 (2)0.0013 (16)0.0043 (16)−0.0036 (18)
C220.028 (2)0.047 (2)0.039 (2)−0.0007 (18)0.0044 (18)−0.0066 (19)
C130.037 (2)0.040 (2)0.059 (3)−0.0082 (19)−0.003 (2)0.013 (2)
C50.056 (3)0.036 (2)0.057 (3)0.007 (2)0.017 (2)0.003 (2)
C120.026 (2)0.046 (2)0.037 (2)−0.0006 (17)0.0030 (17)0.0049 (19)
C240.032 (2)0.052 (3)0.050 (3)−0.0088 (19)0.005 (2)−0.002 (2)
C100.028 (2)0.045 (2)0.052 (3)−0.0045 (18)−0.0022 (19)0.000 (2)
C110.032 (2)0.042 (2)0.049 (3)0.0026 (18)0.0001 (19)0.005 (2)
C140.032 (2)0.046 (3)0.058 (3)0.0006 (19)−0.003 (2)0.017 (2)
C200.040 (2)0.045 (3)0.067 (3)0.004 (2)−0.004 (2)−0.004 (2)
C210.035 (2)0.046 (3)0.058 (3)0.0014 (19)−0.005 (2)−0.004 (2)
C40.056 (3)0.036 (2)0.069 (4)0.011 (2)0.012 (3)0.007 (2)
C30.068 (4)0.049 (3)0.093 (5)0.008 (3)0.004 (3)−0.003 (3)
C70.051 (3)0.049 (3)0.095 (4)0.011 (2)0.035 (3)0.021 (3)
C90.142 (7)0.045 (3)0.061 (4)0.021 (4)0.022 (4)−0.003 (3)
C60.091 (4)0.041 (3)0.072 (4)0.014 (3)0.026 (3)0.004 (3)
C20.095 (5)0.063 (4)0.084 (5)0.016 (4)−0.015 (4)−0.015 (3)
N10.0260 (17)0.048 (2)0.0352 (19)−0.0029 (15)0.0003 (14)0.0045 (16)
C80.026 (2)0.042 (2)0.051 (3)−0.0041 (18)−0.0012 (19)0.007 (2)
O20.0466 (18)0.0451 (18)0.060 (2)−0.0064 (14)0.0066 (16)0.0104 (15)
O10.0492 (19)0.058 (2)0.079 (3)0.0196 (16)0.0269 (18)0.0207 (18)
Cl20.0513 (7)0.0733 (9)0.0809 (10)0.0034 (6)0.0205 (7)0.0069 (7)
Cl10.233 (3)0.1117 (16)0.0609 (11)0.0612 (17)0.0279 (14)−0.0073 (10)
O30.0343 (16)0.0523 (19)0.074 (2)0.0030 (14)0.0096 (16)0.0018 (16)
N60.046 (3)0.090 (4)0.106 (5)−0.011 (3)0.006 (3)−0.018 (4)
C230.034 (2)0.049 (3)0.046 (3)−0.0027 (19)0.0027 (19)0.003 (2)
C250.030 (2)0.044 (2)0.037 (2)−0.0019 (17)0.0077 (18)−0.0073 (18)
C150.0248 (19)0.046 (2)0.030 (2)−0.0039 (17)0.0005 (16)0.0009 (18)
C260.033 (2)0.039 (2)0.063 (3)0.0032 (18)0.000 (2)−0.003 (2)
C190.030 (2)0.043 (2)0.056 (3)−0.0005 (18)−0.003 (2)−0.006 (2)
C160.035 (2)0.040 (2)0.049 (3)0.0053 (18)−0.010 (2)0.001 (2)
C290.039 (2)0.037 (2)0.076 (4)−0.0040 (19)−0.006 (2)−0.005 (2)
C180.031 (2)0.044 (3)0.057 (3)0.0054 (18)0.000 (2)0.000 (2)
C170.042 (2)0.043 (3)0.050 (3)−0.0029 (19)−0.007 (2)−0.005 (2)
C270.036 (2)0.045 (3)0.062 (3)−0.005 (2)0.001 (2)−0.008 (2)
C280.041 (3)0.042 (3)0.068 (3)0.003 (2)−0.001 (2)0.001 (2)
N20.0247 (16)0.046 (2)0.0380 (19)0.0022 (14)0.0003 (15)−0.0057 (16)
N40.0308 (18)0.045 (2)0.042 (2)−0.0016 (15)0.0043 (16)−0.0007 (16)
O60.190 (7)0.083 (4)0.160 (6)−0.010 (4)−0.012 (5)−0.011 (4)
O50.125 (6)0.424 (16)0.139 (7)0.105 (8)0.045 (5)−0.002 (8)
O40.106 (6)0.324 (14)0.378 (15)−0.042 (7)0.023 (7)−0.232 (12)

Geometric parameters (Å, °)

Cu1—N2i1.913 (3)C7—H7A0.9700
Cu1—N11.926 (3)C7—H7B0.9700
Cu1—O22.180 (3)C9—C21.379 (10)
Cu2—N31.922 (4)C9—C61.387 (9)
Cu2—N4i1.931 (3)C9—Cl11.762 (7)
Cu2—O32.155 (3)C6—H60.9300
N3—C201.339 (6)C2—H20.9300
N3—C241.344 (6)C8—O21.235 (5)
C22—C211.387 (6)C8—O31.243 (5)
C22—C231.393 (6)N6—O41.088 (9)
C22—C251.483 (5)N6—O51.169 (8)
C13—C141.372 (6)N6—O61.181 (8)
C13—C121.397 (6)C23—H230.9300
C13—H130.9300C25—C261.374 (6)
C5—C61.380 (7)C25—C291.385 (6)
C5—C41.383 (7)C15—C161.373 (6)
C5—Cl21.730 (5)C15—C191.384 (6)
C12—C111.381 (6)C26—C271.381 (6)
C12—C151.486 (5)C26—H260.9300
C24—C231.373 (6)C19—C181.376 (6)
C24—H240.9300C19—H190.9300
C10—N11.348 (5)C16—C171.379 (6)
C10—C111.366 (5)C16—H160.9300
C10—H100.9300C29—C281.370 (6)
C11—H110.9300C29—H290.9300
C14—N11.332 (6)C18—N21.341 (5)
C14—H140.9300C18—H180.9300
C20—C211.380 (6)C17—N21.339 (5)
C20—H200.9300C17—H170.9300
C21—H210.9300C27—N41.342 (6)
C4—O11.368 (6)C27—H270.9300
C4—C31.384 (8)C28—N41.326 (6)
C3—C21.376 (10)C28—H280.9300
C3—H30.9300N2—Cu1ii1.913 (3)
C7—O11.443 (6)N4—Cu2ii1.931 (3)
C7—C81.519 (6)
N2i—Cu1—N1161.82 (15)C9—C6—H6121.3
N2i—Cu1—O2100.44 (13)C3—C2—C9119.8 (6)
N1—Cu1—O296.62 (13)C3—C2—H2120.1
N3—Cu2—N4i160.65 (15)C9—C2—H2120.1
N3—Cu2—O3100.74 (14)C14—N1—C10116.6 (3)
N4i—Cu2—O397.66 (13)C14—N1—Cu1125.6 (3)
C20—N3—C24116.1 (4)C10—N1—Cu1117.8 (3)
C20—N3—Cu2126.3 (3)O2—C8—O3127.5 (4)
C24—N3—Cu2117.4 (3)O2—C8—C7118.0 (4)
C21—C22—C23116.1 (4)O3—C8—C7114.6 (4)
C21—C22—C25122.9 (4)C8—O2—Cu1143.1 (3)
C23—C22—C25120.9 (4)C4—O1—C7118.3 (4)
C14—C13—C12120.2 (4)C8—O3—Cu2114.4 (3)
C14—C13—H13119.9O4—N6—O5123.0 (10)
C12—C13—H13119.9O4—N6—O6119.4 (8)
C6—C5—C4122.1 (5)O5—N6—O6117.6 (8)
C6—C5—Cl2117.9 (4)C24—C23—C22120.1 (4)
C4—C5—Cl2120.0 (4)C24—C23—H23119.9
C11—C12—C13115.9 (4)C22—C23—H23119.9
C11—C12—C15121.5 (4)C26—C25—C29115.9 (4)
C13—C12—C15122.6 (4)C26—C25—C22122.8 (4)
N3—C24—C23123.8 (4)C29—C25—C22121.2 (4)
N3—C24—H24118.1C16—C15—C19116.1 (4)
C23—C24—H24118.1C16—C15—C12122.2 (4)
N1—C10—C11123.0 (4)C19—C15—C12121.7 (4)
N1—C10—H10118.5C25—C26—C27120.4 (4)
C11—C10—H10118.5C25—C26—H26119.8
C10—C11—C12120.8 (4)C27—C26—H26119.8
C10—C11—H11119.6C18—C19—C15120.9 (4)
C12—C11—H11119.6C18—C19—H19119.6
N1—C14—C13123.4 (4)C15—C19—H19119.6
N1—C14—H14118.3C15—C16—C17120.2 (4)
C13—C14—H14118.3C15—C16—H16119.9
N3—C20—C21123.5 (4)C17—C16—H16119.9
N3—C20—H20118.2C28—C29—C25120.6 (4)
C21—C20—H20118.2C28—C29—H29119.7
C20—C21—C22120.3 (4)C25—C29—H29119.7
C20—C21—H21119.8N2—C18—C19122.8 (4)
C22—C21—H21119.8N2—C18—H18118.6
O1—C4—C5116.4 (4)C19—C18—H18118.6
O1—C4—C3124.4 (5)N2—C17—C16123.7 (4)
C5—C4—C3119.2 (6)N2—C17—H17118.1
C2—C3—C4119.9 (7)C16—C17—H17118.1
C2—C3—H3120.0N4—C27—C26123.2 (4)
C4—C3—H3120.0N4—C27—H27118.4
O1—C7—C8112.6 (4)C26—C27—H27118.4
O1—C7—H7A109.1N4—C28—C29123.6 (4)
C8—C7—H7A109.1N4—C28—H28118.2
O1—C7—H7B109.1C29—C28—H28118.2
C8—C7—H7B109.1C17—N2—C18116.1 (4)
H7A—C7—H7B107.8C17—N2—Cu1ii120.6 (3)
C2—C9—C6121.7 (6)C18—N2—Cu1ii123.3 (3)
C2—C9—Cl1121.2 (6)C28—N4—C27116.2 (4)
C6—C9—Cl1117.1 (6)C28—N4—Cu2ii123.5 (3)
C5—C6—C9117.3 (6)C27—N4—Cu2ii120.3 (3)
C5—C6—H6121.3

Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) x−1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2172).

References

  • Biswas, C., Chattopabhyay, S., Drew, M. G. B. & Ghosh, A. (2007). Polyhedron, 26, 4411–4418.
  • Bourne, S. A. & Moitsheki, L. J. (2007). J. Chem. Crystallogr.37, 359–367.
  • Bruker (2004). APEX2 and SMART Bruker AXS Inc, Madison, Wisconsin, USA.
  • Huang, F.-P., Yu, Q., Bian, H.-D., Yan, S.-P. & Liang, H. (2008). Polyhedron, 27, 3160–3166.
  • Mo, J., Zhang, S.-M., Ge, W.-Z. & Liu, J.-H. (2009). J. Chem. Crystallogr.39, 890–893.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Smith, G., O’Reilly, E. J. & Kennard, C. H. L. (1981). Inorg. Chim. Acta, 49, 53–55.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography