PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m118.
Published online 2010 January 9. doi:  10.1107/S1600536809055780
PMCID: PMC2979711

Bis{2-eth­oxy-6-[2-(isopropyl­ammonio)ethyl­imino­meth­yl]phenolato}dithio­cyanato­nickel(II)

Abstract

In the mononuclear title complex, [Ni(NCS)2(C14H22N2O2)2], the Ni atom lies on an inversion centre. It is chelated by the phenolate O and imine N atoms from two zwitterionic Schiff base ligands, and is also coordinated by the N atoms from two thio­cyanate ligands, giving a slightly distorted octa­hedral geometry. Intra­molecular N—H(...)O and N—H(...)N hydrogen bonds are observed.

Related literature

For related structures, see: Ali et al. (2004 [triangle]); Sarı et al. (2006 [triangle]); Gomes et al. (2000 [triangle]); Su et al. (2006 [triangle]); Wang (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m118-scheme1.jpg

Experimental

Crystal data

  • [Ni(NCS)2(C14H22N2O2)2]
  • M r = 675.54
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m118-efi3.jpg
  • a = 24.958 (3) Å
  • b = 14.016 (2) Å
  • c = 9.613 (2) Å
  • β = 91.73 (2)°
  • V = 3361.2 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.74 mm−1
  • T = 298 K
  • 0.32 × 0.30 × 0.30 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.797, T max = 0.808
  • 9655 measured reflections
  • 3553 independent reflections
  • 2395 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.115
  • S = 1.03
  • 3553 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809055780/ci5007sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055780/ci5007Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of China (grant No. 30771696), the Natural Science Foundation of Zhejiang Province (grant No. Y407318) and the Science and Technology Plan of Huzhou (grant No. 2009GG06).

supplementary crystallographic information

Comment

As part of our investigations into novel urease inhibitors, we have synthesized the title compound, a new NiII complex. The Ni atom lies on an inversion centre; it is chelated by the phenolate O and imine N atoms from two Schiff base ligands, and is coordinated by the N atoms from two thiocyanate ligands (Fig. 1). While the three trans angles at Ni centre are 180° by symmetry, the other angles are close to 90°, ranging from 88.35 (9) to 91.65 (9)°, indicating a slightly distorted octahedral coordination. The Ni—O and Ni—N bond lengths (Table 1) are typical and are comparable with those observed in other similar nickel(II) complexes (Ali et al., 2004; Sarı et al., 2006; Gomes et al., 2000; Su et al., 2006) and the nickel(II) complex we reported previously (Wang, 2007). The amine N atoms of the Schiff base ligands are protonated and take no part in the coordination to the Ni atom.

Experimental

3-Ethoxysalicylaldehyde (0.2 mmol, 33.2 mg) and N-isopropylethane-1,2-diamine (0.2 mmol, 20.4 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature for 10 min to give a clear yellow solution. To this solution was added an aqueous solution (2 ml) of ammonium thiocyanate (0.2 mmol, 15.2 mg) and an aqueous solution (3 ml) of Ni(CH3COO)2.4H2O (0.1 mmol, 24.9 mg) with stirring. The resulting mixture was stirred for another 10 min at room temperature. After keeping the filtrate in air for three days, green block-shaped crystals were formed at the bottom of the vessel.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.98 Å, N–H distance of 0.90 Å, and with Uiso(H) set at 1.2Ueq(C,N) and 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are at the symmetry position (1/2 - x, 1/2 - y, -z).

Crystal data

[Ni(NCS)2(C14H22N2O2)2]F(000) = 1432
Mr = 675.54Dx = 1.335 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1966 reflections
a = 24.958 (3) Åθ = 2.6–24.0°
b = 14.016 (2) ŵ = 0.74 mm1
c = 9.613 (2) ÅT = 298 K
β = 91.73 (2)°Block, green
V = 3361.2 (9) Å30.32 × 0.30 × 0.30 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3553 independent reflections
Radiation source: fine-focus sealed tube2395 reflections with I > 2σ(I)
graphiteRint = 0.046
ω scanθmax = 26.8°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −22→31
Tmin = 0.797, Tmax = 0.808k = −17→17
9655 measured reflectionsl = −12→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0479P)2 + 1.6478P] where P = (Fo2 + 2Fc2)/3
3553 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.25000.25000.00000.03705 (17)
O10.18825 (7)0.33463 (12)0.0484 (2)0.0439 (5)
O20.12016 (8)0.42012 (14)0.2074 (2)0.0484 (5)
S10.37620 (4)0.37891 (7)0.36139 (11)0.0705 (3)
N10.27311 (9)0.35271 (15)−0.1418 (2)0.0377 (5)
N20.38216 (9)0.29760 (16)−0.0841 (2)0.0432 (6)
H2A0.36860.2381−0.08590.052*
H2B0.36640.3293−0.01490.052*
N30.30222 (10)0.31802 (17)0.1565 (3)0.0497 (6)
C10.22283 (11)0.48279 (19)−0.0372 (3)0.0372 (6)
C20.18949 (10)0.42827 (19)0.0487 (3)0.0359 (6)
C30.15393 (11)0.4786 (2)0.1343 (3)0.0394 (6)
C40.15390 (12)0.5763 (2)0.1397 (3)0.0471 (7)
H40.13140.60770.20010.057*
C50.18746 (12)0.6288 (2)0.0548 (3)0.0503 (8)
H50.18750.69510.05880.060*
C60.22023 (12)0.5825 (2)−0.0339 (3)0.0450 (7)
H60.24120.6179−0.09330.054*
C70.25761 (10)0.43974 (19)−0.1374 (3)0.0384 (6)
H70.27010.4798−0.20640.046*
C80.30827 (11)0.3277 (2)−0.2564 (3)0.0443 (7)
H8A0.29840.3656−0.33770.053*
H8B0.30320.2610−0.28030.053*
C90.36703 (12)0.3451 (2)−0.2178 (3)0.0490 (8)
H9A0.38920.3206−0.29090.059*
H9B0.37350.4131−0.20960.059*
C100.44096 (12)0.2910 (2)−0.0492 (4)0.0541 (8)
H100.45890.2635−0.12920.065*
C110.44931 (14)0.2249 (3)0.0734 (4)0.0694 (10)
H11A0.43160.25040.15240.104*
H11B0.48700.21890.09490.104*
H11C0.43470.16330.05080.104*
C120.46405 (16)0.3893 (3)−0.0211 (6)0.1071 (17)
H12A0.46030.4275−0.10370.161*
H12B0.50130.38370.00530.161*
H12C0.44510.41890.05290.161*
C130.08606 (12)0.4648 (2)0.3028 (3)0.0563 (9)
H13A0.06040.50530.25310.068*
H13B0.10700.50440.36680.068*
C140.05710 (14)0.3895 (3)0.3819 (4)0.0724 (11)
H14A0.03560.35170.31830.109*
H14B0.03440.41930.44820.109*
H14C0.08270.34930.42990.109*
C150.33283 (12)0.3433 (2)0.2408 (3)0.0438 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0367 (3)0.0311 (3)0.0435 (3)0.0001 (2)0.0046 (2)−0.0003 (2)
O10.0428 (12)0.0310 (10)0.0586 (13)−0.0001 (8)0.0105 (10)0.0010 (9)
O20.0490 (12)0.0497 (12)0.0474 (12)0.0007 (10)0.0132 (10)−0.0036 (10)
S10.0687 (6)0.0665 (6)0.0751 (7)−0.0097 (5)−0.0174 (5)−0.0083 (5)
N10.0360 (13)0.0375 (13)0.0394 (13)−0.0004 (10)0.0017 (10)−0.0029 (10)
N20.0396 (14)0.0363 (13)0.0540 (15)−0.0037 (10)0.0075 (11)−0.0004 (12)
N30.0552 (17)0.0441 (15)0.0498 (16)0.0005 (12)0.0023 (13)−0.0015 (12)
C10.0383 (16)0.0340 (15)0.0390 (15)0.0023 (12)−0.0022 (12)−0.0009 (12)
C20.0353 (15)0.0330 (15)0.0392 (15)0.0026 (11)−0.0020 (12)−0.0011 (12)
C30.0392 (16)0.0421 (17)0.0367 (15)0.0039 (12)−0.0022 (12)−0.0033 (12)
C40.0515 (18)0.0445 (18)0.0454 (18)0.0079 (14)0.0017 (14)−0.0082 (14)
C50.064 (2)0.0304 (15)0.0558 (19)0.0057 (14)−0.0067 (17)−0.0038 (14)
C60.0498 (18)0.0369 (16)0.0484 (18)0.0005 (14)0.0011 (14)0.0022 (13)
C70.0379 (16)0.0380 (16)0.0393 (15)−0.0030 (12)0.0011 (12)0.0033 (12)
C80.0449 (17)0.0471 (17)0.0414 (16)0.0045 (13)0.0074 (13)0.0014 (13)
C90.0470 (18)0.0500 (18)0.0506 (18)0.0039 (14)0.0127 (15)0.0082 (15)
C100.0353 (17)0.0579 (19)0.069 (2)−0.0005 (14)0.0072 (15)0.0005 (17)
C110.056 (2)0.082 (3)0.070 (3)0.0115 (18)−0.0030 (18)0.006 (2)
C120.071 (3)0.073 (3)0.174 (5)−0.030 (2)−0.037 (3)0.016 (3)
C130.0446 (19)0.074 (2)0.0501 (19)0.0021 (16)0.0076 (15)−0.0172 (17)
C140.057 (2)0.105 (3)0.056 (2)−0.021 (2)0.0162 (18)−0.013 (2)
C150.0463 (18)0.0356 (16)0.0499 (19)0.0018 (13)0.0070 (15)0.0019 (14)

Geometric parameters (Å, °)

Ni1—O1i2.0104 (18)C5—C61.363 (4)
Ni1—O12.0104 (18)C5—H50.93
Ni1—N12.076 (2)C6—H60.93
Ni1—N1i2.076 (2)C7—H70.93
Ni1—N3i2.180 (3)C8—C91.522 (4)
Ni1—N32.180 (3)C8—H8A0.97
O1—C21.313 (3)C8—H8B0.97
O2—C31.383 (3)C9—H9A0.97
O2—C131.416 (3)C9—H9B0.97
S1—C151.639 (3)C10—C111.508 (5)
N1—C71.281 (3)C10—C121.515 (5)
N1—C81.471 (3)C10—H100.98
N2—C91.486 (4)C11—H11A0.96
N2—C101.499 (3)C11—H11B0.96
N2—H2A0.90C11—H11C0.96
N2—H2B0.90C12—H12A0.96
N3—C151.153 (4)C12—H12B0.96
C1—C61.400 (4)C12—H12C0.96
C1—C21.414 (4)C13—C141.500 (4)
C1—C71.448 (4)C13—H13A0.97
C2—C31.416 (4)C13—H13B0.97
C3—C41.370 (4)C14—H14A0.96
C4—C51.397 (4)C14—H14B0.96
C4—H40.93C14—H14C0.96
O1i—Ni1—O1180N1—C7—H7116.3
O1i—Ni1—N191.56 (8)C1—C7—H7116.3
O1—Ni1—N188.44 (8)N1—C8—C9111.8 (2)
O1i—Ni1—N1i88.44 (8)N1—C8—H8A109.3
O1—Ni1—N1i91.56 (8)C9—C8—H8A109.3
N1—Ni1—N1i180N1—C8—H8B109.3
O1i—Ni1—N3i91.65 (9)C9—C8—H8B109.3
O1—Ni1—N3i88.35 (9)H8A—C8—H8B107.9
N1—Ni1—N3i91.28 (9)N2—C9—C8110.9 (2)
N1i—Ni1—N3i88.72 (9)N2—C9—H9A109.5
O1i—Ni1—N388.35 (9)C8—C9—H9A109.5
O1—Ni1—N391.65 (9)N2—C9—H9B109.5
N1—Ni1—N388.72 (9)C8—C9—H9B109.5
N1i—Ni1—N391.28 (9)H9A—C9—H9B108.0
N3i—Ni1—N3180N2—C10—C11108.9 (2)
C2—O1—Ni1124.91 (16)N2—C10—C12110.4 (3)
C3—O2—C13117.0 (2)C11—C10—C12112.1 (3)
C7—N1—C8116.0 (2)N2—C10—H10108.4
C7—N1—Ni1123.30 (19)C11—C10—H10108.4
C8—N1—Ni1120.69 (17)C12—C10—H10108.4
C9—N2—C10116.3 (2)C10—C11—H11A109.5
C9—N2—H2A108.2C10—C11—H11B109.5
C10—N2—H2A108.2H11A—C11—H11B109.5
C9—N2—H2B108.2C10—C11—H11C109.5
C10—N2—H2B108.2H11A—C11—H11C109.5
H2A—N2—H2B107.4H11B—C11—H11C109.5
C15—N3—Ni1171.7 (2)C10—C12—H12A109.5
C6—C1—C2119.8 (3)C10—C12—H12B109.5
C6—C1—C7117.4 (3)H12A—C12—H12B109.5
C2—C1—C7122.6 (2)C10—C12—H12C109.5
O1—C2—C1123.6 (2)H12A—C12—H12C109.5
O1—C2—C3119.0 (2)H12B—C12—H12C109.5
C1—C2—C3117.4 (2)O2—C13—C14109.0 (3)
C4—C3—O2124.9 (3)O2—C13—H13A109.9
C4—C3—C2121.4 (3)C14—C13—H13A109.9
O2—C3—C2113.7 (2)O2—C13—H13B109.9
C3—C4—C5120.2 (3)C14—C13—H13B109.9
C3—C4—H4119.9H13A—C13—H13B108.3
C5—C4—H4119.9C13—C14—H14A109.5
C6—C5—C4119.8 (3)C13—C14—H14B109.5
C6—C5—H5120.1H14A—C14—H14B109.5
C4—C5—H5120.1C13—C14—H14C109.5
C5—C6—C1121.2 (3)H14A—C14—H14C109.5
C5—C6—H6119.4H14B—C14—H14C109.5
C1—C6—H6119.4N3—C15—S1179.7 (3)
N1—C7—C1127.3 (3)

Symmetry codes: (i) −x+1/2, −y+1/2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2B···N30.902.343.113 (3)144
N2—H2A···O2i0.902.533.273 (3)141
N2—H2A···O1i0.901.792.584 (3)145

Symmetry codes: (i) −x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5007).

References

  • Ali, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708–m1709.
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gomes, L., Sousa, C., Freire, C. & de Castro, B. (2000). Acta Cryst. C56, 1201–1203. [PubMed]
  • Sarı, M., Atakol, O., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m563–m565.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Su, Y.-Q., Wang, P., He, Y.-F. & Liu, L.-M. (2006). Acta Cryst. E62, m2673–m2675.
  • Wang, C.-Y. (2007). Acta Cryst. E63, m1076–m1077.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography