PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o276–o277.
Published online 2010 January 9. doi:  10.1107/S160053680905497X
PMCID: PMC2979709

1-Chloro­acetyl-3-isopropyl-r-2,c-6-diphenyl­piperidin-4-one

Abstract

In the title compound, C22H24ClNO2, the piperidine ring adopts a distorted boat conformation. The dihedral angle between the two phenyl rings is 83.2 (1)°. In the crystal, the mol­ecules are linked into chains running along the b axis by C—H(...)O hydrogen bonds. The Cl atom of the chloro­acetyl group is disordered over two positions with occupancies of 0.66 (2) and 0.34 (2).

Related literature

For general background to piperidine derivatives, see: El-Subbagh et al. (2000 [triangle]); Jerom & Spencer (1988 [triangle]); Perumal et al. (2001 [triangle]); Hagenbach & Gysin (1952 [triangle]); Mobio et al. (1989 [triangle]); Katritzky & Fan (1990 [triangle]); Ganellin & Spickett (1965 [triangle]). For asymmetry and puckering parameters, see: Nardelli (1983 [triangle]); Cremer & Pople (1975 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For the synthesis, see: Venkatraj et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o276-scheme1.jpg

Experimental

Crystal data

  • C22H24ClNO2
  • M r = 369.87
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o276-efi1.jpg
  • a = 10.3415 (12) Å
  • b = 9.0243 (9) Å
  • c = 21.438 (2) Å
  • β = 90.894 (3)°
  • V = 2000.5 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 293 K
  • 0.23 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.954, T max = 0.960
  • 19037 measured reflections
  • 4965 independent reflections
  • 3634 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.152
  • S = 1.05
  • 4965 reflections
  • 247 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680905497X/ci2993sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905497X/ci2993Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KR thanks the GNR X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the management of Kandaswami Kandar’s College, Velur, Namakkal, Tamil Nadu, India, for the encouragement to pursue the programme.

supplementary crystallographic information

Comment

Piperidine derivatives gained considerable importance owing to their varied biological properties such as antiviral, antitumour (El-Subbagh et al., 2000), analgesic (Jerom & Spencer, 1988), local anaesthetic (Perumal et al., 2001; Hagenbach & Gysin, 1952), antimicrobial, bactericidal, fungicidal, herbicidal, insecticidal, antihistaminic, anti-inflammatory, anticancer, CNS stimulant and depressant activities (Mobio et al., 1989; Katritzky & Fan, 1990; Ganellin & Spickett, 1965). In view of these importance and to ascertain the molecular conformation, crystallographic study of the title compound has been carried out.

The ORTEP plot of the title molecule is shown in Fig.1. The piperidine ring adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of q2 = 0.661 (2) Å, q3 = -0.057 (2) Å, [var phi]2 = 257.1 (1)° and Δs(C2 and C5)= 20.2 (2)°. The sum of the bond angles around the atom N1 (358.8°) of the piperidine ring is in accordance with the sp2 hybridization.

The crystal packing is stabilized by C—H···O intermolecular interactions which link the molecules into chains running along the b axis. These hydrogen bonds form R12(7) ring motifs (Bernstein et al., 1995).

Experimental

To a solution of r-2,c-6-diphenyl-3-isopropylpiperidin-4-one (2.93 g) in anhydrous benzene (60 ml) was added triethylamine (5.57 ml) and chloroacetylchloride (3.18 ml). The reaction mixture was allowed to stirr at room temperature for 2 h. The resulting solution was washed with sodium bicarbonate solution (10%) and water. Then the organic layer was dried over anhydrous sodium sulfate, evaporated and crystallized from benzene-petroleum ether (60–80°C) in the ratio of 9:1 (Venkatraj et al., 2008).

Refinement

The Cl atom of the chloroacetyl group is disordered over two positions with refined occupancies of 0.662 (18) and 0.338 (18). H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Both disorder components are shown.
Fig. 2.
The crystal packing of the title compound viewed along the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C22H24ClNO2F(000) = 784
Mr = 369.87Dx = 1.228 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2052 reflections
a = 10.3415 (12) Åθ = 1.9–28.3°
b = 9.0243 (9) ŵ = 0.21 mm1
c = 21.438 (2) ÅT = 293 K
β = 90.894 (3)°Block, colourless
V = 2000.5 (4) Å30.23 × 0.23 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer4965 independent reflections
Radiation source: fine-focus sealed tube3634 reflections with I > 2σ(I)
graphiteRint = 0.026
ω and [var phi] scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −13→13
Tmin = 0.954, Tmax = 0.960k = −11→12
19037 measured reflectionsl = −28→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.073P)2 + 0.4534P] where P = (Fo2 + 2Fc2)/3
4965 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl1A0.4290 (5)0.2714 (5)0.19072 (9)0.0742 (9)0.662 (18)
Cl1B0.4685 (12)0.2335 (12)0.2045 (7)0.097 (2)0.338 (18)
O10.28951 (14)0.09562 (14)0.28351 (6)0.0649 (4)
O2−0.07198 (13)0.48645 (19)0.43316 (7)0.0758 (5)
N10.23607 (12)0.28293 (14)0.34870 (6)0.0385 (3)
C20.13248 (14)0.19074 (18)0.37710 (7)0.0416 (3)
H20.11910.10670.34880.050*
C30.00443 (15)0.2766 (2)0.37661 (7)0.0460 (4)
H3−0.05850.21660.39920.055*
C40.01886 (16)0.4218 (2)0.41130 (7)0.0494 (4)
C50.15466 (15)0.47860 (19)0.41923 (7)0.0446 (4)
H5A0.19100.43810.45760.053*
H5B0.15130.58540.42400.053*
C60.24626 (14)0.44202 (17)0.36585 (7)0.0382 (3)
H60.21970.50090.32940.046*
C70.30043 (16)0.22482 (18)0.29965 (7)0.0444 (4)
C80.39016 (18)0.3296 (2)0.26547 (8)0.0524 (4)
H8A0.46940.34060.28980.063*0.662 (18)
H8B0.34950.42630.26270.063*0.662 (18)
H8C0.34120.41090.24850.063*0.338 (18)
H8D0.45360.36900.29410.063*0.338 (18)
C90.17615 (15)0.12393 (18)0.43941 (7)0.0447 (4)
C100.2790 (2)0.0264 (2)0.43950 (10)0.0638 (5)
H100.32030.00620.40220.077*
C110.3221 (2)−0.0420 (3)0.49375 (12)0.0769 (6)
H110.3916−0.10730.49270.092*
C120.2619 (2)−0.0130 (3)0.54915 (10)0.0709 (6)
H120.2906−0.05820.58580.085*
C130.1599 (2)0.0821 (2)0.55003 (9)0.0656 (5)
H130.11900.10150.58750.079*
C140.11594 (18)0.1510 (2)0.49564 (8)0.0541 (4)
H140.04590.21540.49700.065*
C15−0.05025 (19)0.2994 (3)0.30908 (9)0.0619 (5)
H150.01860.34090.28350.074*
C16−0.0902 (4)0.1544 (3)0.28166 (14)0.1154 (12)
H16A−0.02050.08470.28600.173*
H16B−0.11140.16730.23820.173*
H16C−0.16450.11770.30310.173*
C17−0.1643 (3)0.4015 (4)0.30539 (14)0.1232 (13)
H17A−0.14070.49630.32230.185*
H17B−0.23400.36060.32890.185*
H17C−0.19120.41290.26260.185*
C180.38149 (15)0.49029 (18)0.38534 (7)0.0409 (3)
C190.41717 (19)0.6350 (2)0.37469 (9)0.0560 (4)
H190.35970.69910.35460.067*
C200.5382 (2)0.6861 (2)0.39369 (10)0.0674 (5)
H200.56110.78420.38660.081*
C210.62369 (19)0.5928 (3)0.42275 (10)0.0656 (5)
H210.70500.62700.43510.079*
C220.58976 (18)0.4492 (3)0.43370 (9)0.0631 (5)
H220.64830.38560.45330.076*
C230.46858 (17)0.3976 (2)0.41585 (8)0.0511 (4)
H230.44550.30020.42440.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl1A0.1037 (17)0.0687 (12)0.0512 (8)−0.0259 (10)0.0369 (7)−0.0192 (6)
Cl1B0.104 (4)0.077 (3)0.112 (4)−0.017 (3)0.069 (3)−0.030 (3)
O10.0795 (9)0.0486 (7)0.0674 (8)−0.0137 (7)0.0272 (7)−0.0207 (6)
O20.0458 (7)0.0976 (12)0.0841 (10)0.0165 (7)0.0073 (7)−0.0291 (9)
N10.0384 (6)0.0373 (7)0.0400 (6)−0.0036 (5)0.0062 (5)−0.0048 (5)
C20.0383 (7)0.0427 (8)0.0440 (7)−0.0064 (6)0.0049 (6)−0.0035 (6)
C30.0362 (8)0.0569 (10)0.0450 (8)−0.0049 (7)0.0034 (6)−0.0001 (7)
C40.0422 (8)0.0618 (11)0.0444 (8)0.0076 (8)0.0042 (6)−0.0040 (7)
C50.0448 (8)0.0450 (9)0.0441 (8)0.0029 (7)0.0059 (6)−0.0079 (7)
C60.0395 (7)0.0365 (8)0.0388 (7)0.0011 (6)0.0025 (5)−0.0034 (6)
C70.0463 (8)0.0448 (9)0.0424 (7)−0.0033 (7)0.0075 (6)−0.0065 (6)
C80.0616 (10)0.0507 (10)0.0456 (8)−0.0037 (8)0.0173 (7)−0.0050 (7)
C90.0424 (8)0.0418 (9)0.0500 (8)−0.0109 (7)0.0046 (6)0.0026 (7)
C100.0636 (12)0.0599 (12)0.0682 (12)0.0076 (10)0.0117 (9)0.0112 (9)
C110.0686 (13)0.0721 (15)0.0902 (16)0.0093 (11)0.0031 (11)0.0279 (12)
C120.0746 (14)0.0682 (13)0.0694 (12)−0.0138 (11)−0.0121 (10)0.0241 (10)
C130.0776 (14)0.0677 (13)0.0516 (10)−0.0166 (11)0.0048 (9)0.0084 (9)
C140.0557 (10)0.0535 (10)0.0531 (9)−0.0055 (8)0.0062 (7)0.0021 (8)
C150.0524 (10)0.0820 (14)0.0510 (9)−0.0004 (10)−0.0046 (8)0.0034 (9)
C160.156 (3)0.101 (2)0.0880 (17)0.026 (2)−0.0594 (19)−0.0347 (16)
C170.136 (3)0.129 (3)0.103 (2)0.055 (2)−0.057 (2)−0.0268 (19)
C180.0414 (8)0.0422 (8)0.0393 (7)−0.0018 (7)0.0064 (6)−0.0080 (6)
C190.0563 (10)0.0439 (10)0.0676 (11)−0.0045 (8)0.0000 (8)−0.0062 (8)
C200.0657 (12)0.0539 (11)0.0829 (14)−0.0205 (10)0.0043 (10)−0.0130 (10)
C210.0461 (10)0.0804 (15)0.0703 (12)−0.0131 (10)−0.0001 (8)−0.0182 (11)
C220.0493 (10)0.0743 (14)0.0653 (11)0.0028 (10)−0.0079 (8)−0.0049 (10)
C230.0477 (9)0.0512 (10)0.0542 (9)0.0002 (8)−0.0012 (7)−0.0005 (7)

Geometric parameters (Å, °)

Cl1A—C81.739 (3)C10—H100.93
Cl1B—C81.774 (5)C11—C121.375 (3)
O1—C71.221 (2)C11—H110.93
O2—C41.207 (2)C12—C131.360 (3)
N1—C71.3585 (19)C12—H120.93
N1—C61.4853 (19)C13—C141.391 (3)
N1—C21.4936 (19)C13—H130.93
C2—C91.527 (2)C14—H140.93
C2—C31.534 (2)C15—C161.491 (3)
C2—H20.98C15—C171.497 (3)
C3—C41.513 (2)C15—H150.98
C3—C151.560 (2)C16—H16A0.96
C3—H30.98C16—H16B0.96
C4—O21.207 (2)C16—H16C0.96
C4—C51.502 (2)C17—H17A0.96
C5—C61.533 (2)C17—H17B0.96
C5—H5A0.97C17—H17C0.96
C5—H5B0.97C18—C191.377 (2)
C6—C181.517 (2)C18—C231.386 (2)
C6—H60.98C19—C201.389 (3)
C7—C81.521 (2)C19—H190.93
C8—H8A0.97C20—C211.364 (3)
C8—H8B0.97C20—H200.93
C8—H8C0.96C21—C221.363 (3)
C8—H8D0.96C21—H210.93
C9—C101.381 (3)C22—C231.385 (3)
C9—C141.387 (2)C22—H220.93
C10—C111.384 (3)C23—H230.93
C7—N1—C6122.07 (13)C14—C9—C2124.06 (16)
C7—N1—C2117.63 (13)C9—C10—C11121.5 (2)
C6—N1—C2119.08 (12)C9—C10—H10119.2
N1—C2—C9111.86 (12)C11—C10—H10119.2
N1—C2—C3109.90 (13)C12—C11—C10119.8 (2)
C9—C2—C3116.66 (13)C12—C11—H11120.1
N1—C2—H2105.9C10—C11—H11120.1
C9—C2—H2105.9C13—C12—C11119.58 (19)
C3—C2—H2105.9C13—C12—H12120.2
C4—C3—C2110.82 (13)C11—C12—H12120.2
C4—C3—C15111.93 (15)C12—C13—C14120.90 (19)
C2—C3—C15111.93 (14)C12—C13—H13119.5
C4—C3—H3107.3C14—C13—H13119.5
C2—C3—H3107.3C9—C14—C13120.30 (19)
C15—C3—H3107.3C9—C14—H14119.8
O2—C4—C5121.54 (17)C13—C14—H14119.8
O2—C4—C3122.57 (16)C16—C15—C17107.8 (2)
C5—C4—C3115.86 (14)C16—C15—C3110.14 (19)
C4—C5—C6115.44 (13)C17—C15—C3113.83 (18)
C4—C5—H5A108.4C16—C15—H15108.3
C6—C5—H5A108.4C17—C15—H15108.3
C4—C5—H5B108.4C3—C15—H15108.3
C6—C5—H5B108.4C15—C16—H16A109.5
H5A—C5—H5B107.5C15—C16—H16B109.5
N1—C6—C18114.04 (12)H16A—C16—H16B109.5
N1—C6—C5110.53 (12)C15—C16—H16C109.5
C18—C6—C5108.07 (12)H16A—C16—H16C109.5
N1—C6—H6108.0H16B—C16—H16C109.5
C18—C6—H6108.0C15—C17—H17A109.5
C5—C6—H6108.0C15—C17—H17B109.5
O1—C7—N1122.93 (15)H17A—C17—H17B109.5
O1—C7—C8120.78 (14)C15—C17—H17C109.5
N1—C7—C8116.28 (14)H17A—C17—H17C109.5
C7—C8—Cl1A114.03 (15)H17B—C17—H17C109.5
C7—C8—Cl1B109.9 (3)C19—C18—C23118.48 (16)
C7—C8—H8A108.7C19—C18—C6118.35 (15)
Cl1A—C8—H8A108.7C23—C18—C6123.11 (15)
Cl1B—C8—H8A93.1C18—C19—C20120.57 (19)
C7—C8—H8B108.7C18—C19—H19119.7
Cl1A—C8—H8B108.7C20—C19—H19119.7
Cl1B—C8—H8B126.7C21—C20—C19120.3 (2)
H8A—C8—H8B107.6C21—C20—H20119.9
C7—C8—H8C109.6C19—C20—H20119.9
Cl1A—C8—H8C90.5C22—C21—C20119.88 (18)
Cl1B—C8—H8C109.7C22—C21—H21120.1
H8A—C8—H8C124.2C20—C21—H21120.1
C7—C8—H8D109.7C21—C22—C23120.41 (19)
Cl1A—C8—H8D122.4C21—C22—H22119.8
Cl1B—C8—H8D109.7C23—C22—H22119.8
H8B—C8—H8D89.9C22—C23—C18120.39 (18)
H8C—C8—H8D108.2C22—C23—H23119.8
C10—C9—C14117.86 (16)C18—C23—H23119.8
C10—C9—C2118.04 (15)
C7—N1—C2—C9104.81 (16)N1—C2—C9—C10−62.6 (2)
C6—N1—C2—C9−87.54 (16)C3—C2—C9—C10169.66 (16)
C7—N1—C2—C3−123.94 (15)N1—C2—C9—C14119.83 (17)
C6—N1—C2—C343.72 (17)C3—C2—C9—C14−7.9 (2)
N1—C2—C3—C4−57.76 (16)C14—C9—C10—C11−0.5 (3)
C9—C2—C3—C470.91 (18)C2—C9—C10—C11−178.19 (19)
N1—C2—C3—C1567.97 (17)C9—C10—C11—C120.0 (3)
C9—C2—C3—C15−163.36 (14)C10—C11—C12—C130.3 (3)
C2—C3—C4—O2−157.42 (17)C11—C12—C13—C14−0.2 (3)
C15—C3—C4—O276.9 (2)C10—C9—C14—C130.6 (3)
C2—C3—C4—C520.3 (2)C2—C9—C14—C13178.19 (16)
C15—C3—C4—C5−105.41 (17)C12—C13—C14—C9−0.3 (3)
O2—C4—C5—C6−149.50 (17)C4—C3—C15—C16−167.5 (2)
C3—C4—C5—C632.7 (2)C2—C3—C15—C1667.4 (2)
C7—N1—C6—C18−62.87 (18)C4—C3—C15—C17−46.3 (3)
C2—N1—C6—C18130.04 (13)C2—C3—C15—C17−171.4 (2)
C7—N1—C6—C5175.14 (14)N1—C6—C18—C19150.61 (14)
C2—N1—C6—C58.06 (17)C5—C6—C18—C19−86.06 (17)
C4—C5—C6—N1−47.51 (19)N1—C6—C18—C23−32.4 (2)
C4—C5—C6—C18−172.94 (14)C5—C6—C18—C2390.93 (18)
C6—N1—C7—O1−177.26 (16)C23—C18—C19—C200.6 (3)
C2—N1—C7—O1−10.0 (2)C6—C18—C19—C20177.69 (17)
C6—N1—C7—C83.6 (2)C18—C19—C20—C210.5 (3)
C2—N1—C7—C8170.82 (14)C19—C20—C21—C22−0.6 (3)
O1—C7—C8—Cl1A20.2 (3)C20—C21—C22—C23−0.4 (3)
N1—C7—C8—Cl1A−160.6 (3)C21—C22—C23—C181.5 (3)
O1—C7—C8—Cl1B−0.7 (7)C19—C18—C23—C22−1.6 (3)
N1—C7—C8—Cl1B178.5 (7)C6—C18—C23—C22−178.55 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.982.573.504 (2)160
C8—H8C···O1i0.962.253.203 (2)174

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2993).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem.43, 2915–2921. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ganellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem.8, 619–625. [PubMed]
  • Hagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184–185. [PubMed]
  • Jerom, B. R. & Spencer, K. H. (1988). Eur. Pat. Appl. EP 277794.
  • Katritzky, A. R. & Fan, W. J. (1990). J. Org. Chem.55, 3205–3209.
  • Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh.23, 421–427.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Venkatraj, M., Ponnuswamy, S. & Jeyaraman, R. (2008). Indian J. Chem. Sect. B, 47, 411–426.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography