PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m229–m230.
Published online 2010 January 30. doi:  10.1107/S1600536810003259
PMCID: PMC2979697

Di-μ-chlorido-bis­{[2-({[2-(2-pyrid­yl)eth­yl](2-pyridylmeth­yl)amino}meth­yl)phenol]zinc(II)} bis­(perchlorate) dihydrate

Abstract

The title compound, [Zn2Cl2(C20H21N3O)2](ClO4)2·2H2O, consists of a dinuclear ZnII cationic complex, two disordered perchlorate anions and two water mol­ecules as solvate. The [Zn2(μ-Cl)2(HL)2]2+ cation [HL is 2-({[2-(2-pyrid­yl)eth­yl](2-pyridylmeth­yl)amino}meth­yl)phenol] has a centrosymmetric structure with the ZnII ions in a distorted octa­hedral environment surrounded by an N3OCl2 donor set. HL acts as a tetra­dentate ligand through three N atoms from one amine group and two pyridyl arms and one O atom from the phenolic arm. The three N-donor sites of the HL ligand are arranged in meridional fashion, with the pyridine rings coordinated in trans positions with respect to each other. Consequently, the amine and phenol groups are trans to the asymmetric di-μ-chlorido exogenous bridges. A polymeric chain is formed along [010] by C(12)R 4 2(8) inter­molecular hydrogen bonding. The perchlorate anion is disordered and was modelled by two sites in a 0.345 (18):0.655 (18) ratio. Water–perchlorate O—H(...)O inter­actions form cyclic structures, while phenol–water O—H(...)O inter­actions generate an infinite chain. In addition, weak inter­molecular C—H(...)π(Ph) inter­actions between pyridine donor and phenol acceptor groups of neighboring cations build a two-dimensional polymeric structure parallel to (110).

Related literature

For general background to zinc enzymes, see: Parkin (2004 [triangle]) and for general background to mimetic models of zinc enzymes, see: Boseggia et al. (2004 [triangle]); Mancin & Tecillia (2007 [triangle]); Mitić et al. (2006 [triangle]); Morrow & Iranzo (2004 [triangle]); Rajski & Williams (1998 [triangle]). For the biological activity of zinc complexes, see: Beraldo & Gambino (2004 [triangle]); Singla & Wadhwa (1995 [triangle]); Zhou et al. (2003 [triangle]). For related structures, see: Ojida et al. (2006 [triangle]); Trösch & Vahrenkamp (1998 [triangle]); Gross & Vahrenkamp (2005 [triangle]). For the preparation of the HL ligand, see: Yan & Que (1988 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m229-scheme1.jpg

Experimental

Crystal data

  • [Zn2Cl2(C20H21N3O)2](ClO4)2·2H2O
  • M r = 1075.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m229-efi1.jpg
  • a = 12.3394 (14) Å
  • b = 13.2714 (9) Å
  • c = 14.751 (2) Å
  • β = 107.779 (9)°
  • V = 2300.2 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.34 mm−1
  • T = 293 K
  • 0.50 × 0.46 × 0.33 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan [PLATON (Spek, 2009 [triangle]) and North et al. (1968 [triangle])] T min = 0.554, T max = 0.666
  • 4253 measured reflections
  • 4088 independent reflections
  • 2810 reflections with I > 2σ(I)
  • R int = 0.022
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.121
  • S = 1.05
  • 4088 reflections
  • 326 parameters
  • 124 restraints
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003259/fj2277sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003259/fj2277Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC) and the Instituto Nacional de Ciência e Tecnologia (INCT) - Catálise for financial assistance.

supplementary crystallographic information

Comment

Zinc is found in an all known forms of life as a trace element. It plays important roles in biological systems and its divalent ion is present in the active sites of several classes of metalloenzymes (Parkin, 2004). The design of artificial nucleases has recently received considerable interest due to their potential applications in catalysis, molecular biology and drug development (Mitić et al., 2006; Morrow & Iranzo, 2004; Rajski & Williams, 1998). Intense efforts have been devoted to the improvement of mimetic models for nucleases and peptidases through mono and polynuclear complexes (Boseggia et al., 2004; Mancin & Tecillia, 2007; Mitić et al., 2006). Recent studies have demonstrated that zinc complexes show anti-inflammatory and anti-tumoral activity (Beraldo & Gambino, 2004; Singla & Wadhwa, 1995; Zhou et al., 2003).

The cation of (I) is a dinuclear ZnII complex showing centrosymmentric molecular structure with local symmetry Ci. Zinc(II) ions are in distorted octahedral environment surrounded by N3O donor set of the HL ligand (HL is (2-pyridylethyl)(2-pyridylmethyl)(2-hydroxybenzyl)amine) and two Cl- as exogenous bridges (Fig. 1). HL ligand acts as a typical four-chelating ligand and it is coordinated to the metal center through its three nitrogen atoms of the amine group and two pyridinic arms and one oxygen atom from protonated phenolic arm. The three N-donor sites of the HL ligand are arranged in meridional fashion, where pyridine rings are coordinated in trans positions with respect to each other. Consequently, the amine and phenol groups are trans to the asymmetric bis(µ-chloro) bridges.

Bond lengths around metal center are in the expected range and comparable to other zinc(II) complexes with N2O donor set (Ojida et al., 2006; Trösch & Vahrenkamp, 1998; Gross & Vahrenkamp, 2005). The long distance Zn—Ophenol is typical for the coordination of protonated phenol group. The asymmetric bridge is due to the fact that two different groups with different trans effect are in trans positions to the chloro bridge. The distance Zn—Cl is shorter when amine group is trans to the bridge, whereas this distance is longer when phenol group is trans to µ-Cl. The cis angles are ranging from 77.69 (14)° to 100.55 (9)°, being the more closed angle restricted by a five-membered chelate ring formed by 2-methylpyridine arm. Although 2-ethylpyridine arm makes six-membered chelate ring, 2-methylpyridine arm also induces the greatest deviation from the ideal trans angle for N22—Zn1—N32.

The three-dimensional packing of (I) is governed by an extensive and interesting hydrogen bonding network (Fig. 2). Water molecules of crystallization and perchlorate anions form a cyclic structures by O1W—H···O interactions with a graph set of R42(8). These rings link the dinuclear cations through O10—H···O1W interactions between phenol and water groups building infinite one-dimensional chains along [010] direction with C(12) graph set. In addition, weak C—H···π(phenol) intermolecular interactions between pyridine (donor) and phenol (acceptor) groups of neighboring molecules also contribute to the stabilization of the crystalline structure aggregating the linear chains in two-dimensional polymer parallel to (110) plane. The calculated distance H35···centroidphenol is 3.136 Å and the angle C35—H35—Centroid is 147.55°. Finally, the molecules of (I) are stacked viewing along [100] in perpendicular projection of the linear chains.

Experimental

HL ligand has been prepared according to the procedure described by Yan & Que (1988). To a solution of HL (0.239 g, 0.78 mmol) in methanol (10 ml) was dropped 10 ml of the suspension containing 0.291 g of Zn(ClO)4.6H2O (0.78 mmol) in methanol. The mixture was stirred for 15 minutes at room temperature. After one hour on standing, a white precipitate was formed and it was filtered off and dried under vacuum (yield 0.63 g, 74%). The white powder was recrystallized in ethanol affording colorless crystals.

Refinement

H atoms were placed at their idealized positions with distances of 0.97 and 0.93 Å for CH2 and CHAr, respectively. Uiso of the H atoms were fixed at 1.2 times of the Ueq of the preceding atom. Hydrogen atoms of the phenol and water of crystallization were found from Fourier difference map and treated with riding model and its Uiso were also fixed at 1.2 times Ueq of the parent O atom. Perchlorate anion is disordered with two alternative positions for all oxygen atoms. The occupancy for disordered atoms of 0.655 (18) and 0.345 (18) were refined. Although disordered O atoms and some carbon atoms show abnormal adp, all non-hydrogen atoms were refined anisotropically with positive definite thermal tensor. Further, the final indices wR2 decreased more than 33% (from about 0.18 to 0.1211) after anisotropic refinement of the disordered atoms.

Figures

Fig. 1.
The molecular structure of (I) with partial labeling scheme. Hydrogen atoms were omitted for clarity. Displacement ellipsoids are shown at the 30% probability level. Symmetry code: -x+1, -y+1, -z+1.
Fig. 2.
Partial packing of the title compound showing one-dimensional chain along [010] (symmetry code: -x+1, -y, -z+1) (top) and two-dimensional polymer parallel to (110) plane (symmetry code: -x+2, -y+1, -z+1) (bottom).

Crystal data

[Zn2Cl2(C20H21N3O)2](ClO4)2·2H2OF(000) = 1104
Mr = 1075.37Dx = 1.553 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.3394 (14) Åθ = 8.3–17.1°
b = 13.2714 (9) ŵ = 1.34 mm1
c = 14.751 (2) ÅT = 293 K
β = 107.779 (9)°Irregular block, colorless
V = 2300.2 (5) Å30.50 × 0.46 × 0.33 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer2810 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
graphiteθmax = 25.1°, θmin = 1.9°
ω–2θ scansh = −14→14
Absorption correction: ψ scan [PLATON (Spek, 2009) and North et al. (1968)]k = −15→0
Tmin = 0.554, Tmax = 0.666l = −17→0
4253 measured reflections3 standard reflections every 200 reflections
4088 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0568P)2 + 1.725P] where P = (Fo2 + 2Fc2)/3
4088 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.47 e Å3
124 restraintsΔρmin = −0.38 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Zn10.62107 (4)0.44256 (4)0.58271 (3)0.05155 (18)
Cl10.47634 (10)0.38528 (8)0.44263 (7)0.0603 (3)
O100.6920 (3)0.2883 (2)0.5950 (2)0.0606 (7)
H100.64210.23760.56390.073*
N10.7553 (3)0.4677 (3)0.7236 (2)0.0572 (9)
C100.8077 (4)0.3716 (4)0.7702 (3)0.0635 (12)
H10A0.74840.32980.78100.076*
H10B0.86120.38750.83190.076*
C110.8689 (4)0.3121 (3)0.7133 (3)0.0576 (11)
C120.8065 (4)0.2698 (3)0.6261 (3)0.0531 (10)
C130.8592 (4)0.2119 (3)0.5741 (3)0.0645 (12)
H130.81760.18600.51520.077*
C140.9746 (5)0.1929 (4)0.6105 (4)0.0788 (15)
H141.01020.15320.57610.095*
C151.0369 (5)0.2315 (4)0.6964 (4)0.0830 (16)
H151.11430.21770.72050.100*
C160.9841 (4)0.2916 (4)0.7478 (4)0.0757 (14)
H161.02690.31840.80600.091*
C200.6837 (4)0.5105 (4)0.7793 (3)0.0656 (12)
H20A0.66110.57850.75790.079*
H20B0.72760.51330.84620.079*
C210.5802 (4)0.4470 (3)0.7672 (3)0.0613 (11)
N220.5338 (3)0.4064 (3)0.6806 (2)0.0550 (9)
C230.4413 (4)0.3488 (4)0.6644 (4)0.0654 (12)
H230.41050.31970.60460.078*
C240.3901 (5)0.3313 (4)0.7336 (4)0.0838 (16)
H240.32570.29080.72100.101*
C250.4356 (6)0.3747 (5)0.8221 (4)0.0969 (19)
H250.40100.36570.86930.116*
C260.5320 (5)0.4309 (4)0.8391 (4)0.0836 (16)
H260.56540.45850.89920.100*
C290.8489 (4)0.5393 (4)0.7227 (4)0.0754 (14)
H29A0.91410.50080.71870.090*
H29B0.87170.57610.78240.090*
C300.8161 (5)0.6143 (4)0.6411 (4)0.0844 (16)
H30A0.74210.64250.63650.101*
H30B0.87080.66900.65470.101*
C310.8117 (5)0.5679 (4)0.5478 (4)0.0785 (15)
N320.7396 (3)0.4907 (3)0.5160 (3)0.0622 (9)
C330.7388 (5)0.4462 (4)0.4339 (4)0.0786 (15)
H330.68860.39300.41170.094*
C340.8076 (7)0.4745 (6)0.3813 (5)0.110 (2)
H340.80590.44070.32560.132*
C350.8784 (7)0.5538 (7)0.4133 (7)0.131 (3)
H350.92460.57610.37790.157*
C360.8832 (5)0.6015 (5)0.4963 (6)0.105 (2)
H360.93280.65510.51830.126*
O1W0.5727 (3)0.1334 (3)0.5140 (3)0.1020 (13)
H1WA0.50200.14860.49140.122*
H1WB0.59990.11200.47160.122*
Cl20.30150 (12)0.07028 (13)0.58931 (11)0.0868 (4)
O1P0.2155 (15)0.0026 (14)0.5614 (12)0.141 (11)0.345 (18)
O1P'0.2667 (19)−0.0214 (9)0.5796 (12)0.312 (16)0.655 (18)
O2P0.3503 (13)0.0570 (12)0.5146 (9)0.094 (6)0.345 (18)
O2P'0.3620 (13)0.0972 (14)0.5372 (9)0.280 (13)0.655 (18)
O3P0.3813 (14)0.0494 (19)0.6654 (11)0.32 (3)0.345 (18)
O3P'0.3603 (13)0.0915 (9)0.6789 (5)0.193 (7)0.655 (18)
O4P0.2611 (19)0.1602 (10)0.5814 (18)0.37 (4)0.345 (18)
O4P'0.2149 (12)0.1330 (15)0.5729 (12)0.333 (16)0.655 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0624 (3)0.0507 (3)0.0425 (3)0.0015 (2)0.0173 (2)−0.0019 (2)
Cl10.0718 (7)0.0522 (6)0.0512 (6)0.0066 (5)0.0105 (5)−0.0085 (5)
O100.0609 (19)0.0487 (16)0.0676 (19)0.0033 (14)0.0125 (15)−0.0097 (14)
N10.065 (2)0.055 (2)0.0480 (19)−0.0006 (17)0.0122 (16)−0.0086 (16)
C100.069 (3)0.074 (3)0.044 (2)0.008 (2)0.012 (2)0.005 (2)
C110.063 (3)0.056 (3)0.054 (2)0.009 (2)0.019 (2)0.012 (2)
C120.063 (3)0.042 (2)0.058 (2)0.005 (2)0.025 (2)0.0069 (19)
C130.076 (3)0.054 (3)0.070 (3)0.005 (2)0.032 (3)0.002 (2)
C140.088 (4)0.068 (3)0.096 (4)0.011 (3)0.052 (3)0.009 (3)
C150.060 (3)0.090 (4)0.105 (4)0.013 (3)0.034 (3)0.023 (3)
C160.068 (3)0.089 (4)0.066 (3)0.003 (3)0.015 (3)0.012 (3)
C200.085 (3)0.066 (3)0.043 (2)0.005 (3)0.015 (2)−0.013 (2)
C210.080 (3)0.056 (3)0.051 (2)0.016 (2)0.024 (2)0.000 (2)
N220.064 (2)0.055 (2)0.050 (2)0.0066 (18)0.0238 (17)0.0015 (16)
C230.074 (3)0.059 (3)0.071 (3)0.007 (2)0.032 (3)0.007 (2)
C240.086 (4)0.075 (4)0.105 (4)0.003 (3)0.051 (3)0.015 (3)
C250.124 (5)0.102 (5)0.090 (4)0.007 (4)0.070 (4)0.012 (4)
C260.115 (5)0.087 (4)0.061 (3)0.018 (4)0.044 (3)0.002 (3)
C290.080 (3)0.069 (3)0.073 (3)−0.014 (3)0.017 (3)−0.014 (3)
C300.072 (3)0.061 (3)0.120 (5)−0.008 (3)0.027 (3)−0.005 (3)
C310.079 (3)0.060 (3)0.105 (4)0.013 (3)0.042 (3)0.015 (3)
N320.073 (2)0.053 (2)0.068 (2)0.003 (2)0.032 (2)0.0069 (19)
C330.089 (4)0.090 (4)0.068 (3)0.025 (3)0.041 (3)0.019 (3)
C340.136 (6)0.121 (6)0.102 (5)0.042 (5)0.077 (5)0.039 (4)
C350.133 (7)0.137 (7)0.162 (8)0.043 (6)0.103 (6)0.068 (6)
C360.089 (4)0.089 (4)0.156 (6)0.003 (3)0.065 (5)0.036 (5)
O1W0.081 (2)0.078 (3)0.142 (4)−0.003 (2)0.025 (2)−0.037 (2)
Cl20.0735 (9)0.1060 (12)0.0876 (9)−0.0081 (8)0.0345 (8)−0.0347 (8)
O1P0.147 (14)0.137 (18)0.108 (13)−0.099 (13)−0.005 (12)0.025 (13)
O1P'0.50 (4)0.166 (13)0.37 (3)−0.155 (18)0.28 (3)−0.142 (17)
O2P0.122 (11)0.103 (10)0.066 (7)−0.021 (9)0.041 (7)−0.039 (7)
O2P'0.315 (19)0.41 (3)0.185 (13)−0.25 (2)0.177 (14)−0.159 (15)
O3P0.107 (16)0.50 (7)0.27 (4)0.09 (3)−0.074 (19)0.14 (4)
O3P'0.36 (2)0.140 (9)0.064 (5)−0.051 (10)0.037 (8)−0.027 (5)
O4P0.105 (18)0.127 (18)0.84 (10)0.018 (13)0.07 (3)−0.24 (4)
O4P'0.092 (9)0.48 (4)0.37 (2)0.118 (15)−0.027 (10)−0.17 (2)

Geometric parameters (Å, °)

Zn1—N322.096 (4)C23—H230.9300
Zn1—N222.103 (3)C24—C251.380 (8)
Zn1—O102.212 (3)C24—H240.9300
Zn1—N12.252 (3)C25—C261.360 (8)
Zn1—Cl12.4048 (12)C25—H250.9300
Zn1—Cl1i2.5555 (12)C26—H260.9300
Cl1—Zn1i2.5555 (12)C29—C301.519 (7)
O10—C121.368 (5)C29—H29A0.9700
O10—H100.9333C29—H29B0.9700
N1—C201.491 (5)C30—C311.494 (8)
N1—C101.498 (6)C30—H30A0.9700
N1—C291.499 (6)C30—H30B0.9700
C10—C111.512 (6)C31—N321.345 (6)
C10—H10A0.9700C31—C361.400 (8)
C10—H10B0.9700N32—C331.344 (6)
C11—C161.383 (6)C33—C341.366 (8)
C11—C121.400 (6)C33—H330.9300
C12—C131.380 (6)C34—C351.358 (11)
C13—C141.383 (7)C34—H340.9300
C13—H130.9300C35—C361.364 (10)
C14—C151.365 (8)C35—H350.9300
C14—H140.9300C36—H360.9300
C15—C161.391 (7)O1W—H1WA0.8581
C15—H150.9300O1W—H1WB0.8444
C16—H160.9300Cl2—O2P'1.274 (9)
C20—C211.494 (7)Cl2—O3P1.277 (11)
C20—H20A0.9700Cl2—O1P'1.283 (10)
C20—H20B0.9700Cl2—O4P1.284 (11)
C21—N221.344 (5)Cl2—O4P'1.318 (10)
C21—C261.382 (6)Cl2—O3P'1.329 (8)
N22—C231.334 (6)Cl2—O1P1.354 (10)
C23—C241.374 (6)Cl2—O2P1.418 (10)
N32—Zn1—N22165.61 (15)C23—N22—C21119.6 (4)
N32—Zn1—O1090.28 (13)C23—N22—Zn1126.7 (3)
N22—Zn1—O1090.33 (12)C21—N22—Zn1113.7 (3)
N32—Zn1—N188.07 (14)N22—C23—C24121.7 (5)
N22—Zn1—N177.69 (14)N22—C23—H23119.1
O10—Zn1—N184.28 (12)C24—C23—H23119.1
N32—Zn1—Cl197.72 (11)C23—C24—C25119.0 (5)
N22—Zn1—Cl196.67 (11)C23—C24—H24120.5
O10—Zn1—Cl187.09 (8)C25—C24—H24120.5
N1—Zn1—Cl1169.64 (10)C26—C25—C24119.0 (5)
N32—Zn1—Cl1i91.34 (10)C26—C25—H25120.5
N22—Zn1—Cl1i89.29 (10)C24—C25—H25120.5
O10—Zn1—Cl1i174.95 (8)C25—C26—C21120.0 (5)
N1—Zn1—Cl1i100.55 (9)C25—C26—H26120.0
Cl1—Zn1—Cl1i87.95 (4)C21—C26—H26120.0
Zn1—Cl1—Zn1i92.05 (4)N1—C29—C30113.7 (4)
C12—O10—Zn1122.4 (2)N1—C29—H29A108.8
C12—O10—H10119.6C30—C29—H29A108.8
Zn1—O10—H10116.2N1—C29—H29B108.8
C20—N1—C10108.4 (3)C30—C29—H29B108.8
C20—N1—C29110.6 (4)H29A—C29—H29B107.7
C10—N1—C29108.5 (4)C31—C30—C29112.7 (4)
C20—N1—Zn1100.0 (2)C31—C30—H30A109.0
C10—N1—Zn1113.0 (3)C29—C30—H30A109.0
C29—N1—Zn1116.0 (3)C31—C30—H30B109.0
N1—C10—C11114.1 (3)C29—C30—H30B109.0
N1—C10—H10A108.7H30A—C30—H30B107.8
C11—C10—H10A108.7N32—C31—C36120.9 (6)
N1—C10—H10B108.7N32—C31—C30118.0 (4)
C11—C10—H10B108.7C36—C31—C30121.2 (6)
H10A—C10—H10B107.6C33—N32—C31118.1 (4)
C16—C11—C12118.3 (4)C33—N32—Zn1118.4 (3)
C16—C11—C10122.0 (4)C31—N32—Zn1123.4 (3)
C12—C11—C10119.5 (4)N32—C33—C34123.8 (6)
O10—C12—C13121.8 (4)N32—C33—H33118.1
O10—C12—C11117.3 (4)C34—C33—H33118.1
C13—C12—C11120.9 (4)C35—C34—C33117.5 (7)
C12—C13—C14119.3 (5)C35—C34—H34121.3
C12—C13—H13120.3C33—C34—H34121.3
C14—C13—H13120.3C34—C35—C36121.2 (7)
C15—C14—C13120.8 (5)C34—C35—H35119.4
C15—C14—H14119.6C36—C35—H35119.4
C13—C14—H14119.6C35—C36—C31118.5 (7)
C14—C15—C16119.8 (5)C35—C36—H36120.7
C14—C15—H15120.1C31—C36—H36120.7
C16—C15—H15120.1H1WA—O1W—H1WB112.3
C11—C16—C15120.8 (5)O2P'—Cl2—O1P'115.8 (9)
C11—C16—H16119.6O3P—Cl2—O4P117.1 (10)
C15—C16—H16119.6O2P'—Cl2—O4P'107.6 (9)
N1—C20—C21110.4 (3)O1P'—Cl2—O4P'110.7 (7)
N1—C20—H20A109.6O2P'—Cl2—O3P'107.3 (7)
C21—C20—H20A109.6O1P'—Cl2—O3P'111.9 (8)
N1—C20—H20B109.6O4P'—Cl2—O3P'102.4 (7)
C21—C20—H20B109.6O3P—Cl2—O1P116.5 (11)
H20A—C20—H20B108.1O4P—Cl2—O1P110.0 (8)
N22—C21—C26120.6 (5)O3P—Cl2—O2P105.0 (9)
N22—C21—C20116.1 (4)O4P—Cl2—O2P106.8 (11)
C26—C21—C20123.2 (4)O1P—Cl2—O2P99.2 (8)
N32—Zn1—Cl1—Zn1i−91.08 (11)C20—C21—N22—C23179.9 (4)
N22—Zn1—Cl1—Zn1i89.05 (10)C26—C21—N22—Zn1179.4 (4)
O10—Zn1—Cl1—Zn1i179.03 (8)C20—C21—N22—Zn10.4 (5)
N1—Zn1—Cl1—Zn1i145.4 (5)N32—Zn1—N22—C23−166.2 (5)
N32—Zn1—O10—C1245.9 (3)O10—Zn1—N22—C23−73.8 (4)
N22—Zn1—O10—C12−119.7 (3)N1—Zn1—N22—C23−157.9 (4)
N1—Zn1—O10—C12−42.1 (3)Cl1—Zn1—N22—C2313.3 (4)
Cl1—Zn1—O10—C12143.6 (3)Cl1i—Zn1—N22—C23101.2 (4)
N32—Zn1—N1—C20141.0 (3)N32—Zn1—N22—C2113.3 (7)
N22—Zn1—N1—C20−37.0 (3)O10—Zn1—N22—C21105.7 (3)
O10—Zn1—N1—C20−128.6 (3)N1—Zn1—N22—C2121.6 (3)
Cl1—Zn1—N1—C20−94.8 (6)Cl1—Zn1—N22—C21−167.2 (3)
Cl1i—Zn1—N1—C2050.0 (3)Cl1i—Zn1—N22—C21−79.3 (3)
N32—Zn1—N1—C10−104.0 (3)C21—N22—C23—C241.5 (7)
N22—Zn1—N1—C1078.0 (3)Zn1—N22—C23—C24−179.1 (4)
O10—Zn1—N1—C10−13.5 (3)N22—C23—C24—C250.1 (8)
Cl1—Zn1—N1—C1020.2 (7)C23—C24—C25—C26−2.1 (9)
Cl1i—Zn1—N1—C10165.0 (3)C24—C25—C26—C212.5 (9)
N32—Zn1—N1—C2922.2 (3)N22—C21—C26—C25−1.0 (8)
N22—Zn1—N1—C29−155.8 (3)C20—C21—C26—C25178.0 (5)
O10—Zn1—N1—C29112.6 (3)C20—N1—C29—C30−89.1 (5)
Cl1—Zn1—N1—C29146.4 (5)C10—N1—C29—C30152.1 (4)
Cl1i—Zn1—N1—C29−68.8 (3)Zn1—N1—C29—C3023.7 (5)
C20—N1—C10—C11171.6 (4)N1—C29—C30—C31−74.9 (6)
C29—N1—C10—C11−68.3 (5)C29—C30—C31—N3259.3 (6)
Zn1—N1—C10—C1161.8 (4)C29—C30—C31—C36−118.6 (6)
N1—C10—C11—C16118.6 (5)C36—C31—N32—C330.6 (7)
N1—C10—C11—C12−66.2 (5)C30—C31—N32—C33−177.3 (4)
Zn1—O10—C12—C13−126.7 (4)C36—C31—N32—Zn1−175.2 (4)
Zn1—O10—C12—C1153.2 (4)C30—C31—N32—Zn16.9 (6)
C16—C11—C12—O10177.9 (4)N22—Zn1—N32—C33152.3 (5)
C10—C11—C12—O102.5 (6)O10—Zn1—N32—C3359.9 (3)
C16—C11—C12—C13−2.2 (6)N1—Zn1—N32—C33144.1 (3)
C10—C11—C12—C13−177.6 (4)Cl1—Zn1—N32—C33−27.2 (3)
O10—C12—C13—C14−177.9 (4)Cl1i—Zn1—N32—C33−115.3 (3)
C11—C12—C13—C142.2 (6)N22—Zn1—N32—C31−32.0 (8)
C12—C13—C14—C15−0.8 (7)O10—Zn1—N32—C31−124.4 (4)
C13—C14—C15—C16−0.6 (8)N1—Zn1—N32—C31−40.1 (4)
C12—C11—C16—C150.8 (7)Cl1—Zn1—N32—C31148.5 (4)
C10—C11—C16—C15176.1 (5)Cl1i—Zn1—N32—C3160.4 (4)
C14—C15—C16—C110.6 (8)C31—N32—C33—C340.4 (7)
C10—N1—C20—C21−70.2 (4)Zn1—N32—C33—C34176.4 (4)
C29—N1—C20—C21171.0 (4)N32—C33—C34—C35−1.6 (9)
Zn1—N1—C20—C2148.2 (4)C33—C34—C35—C361.9 (11)
N1—C20—C21—N22−36.3 (5)C34—C35—C36—C31−1.0 (11)
N1—C20—C21—C26144.7 (4)N32—C31—C36—C35−0.3 (9)
C26—C21—N22—C23−1.0 (6)C30—C31—C36—C35177.6 (6)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O10—H10···O1W0.931.672.598 (4)170
O1W—H1WA···O2P0.862.342.928 (15)126
O1W—H1WA···O2P'0.862.152.766 (13)128
O1W—H1WB···O1P'ii0.842.343.117 (19)153
O1W—H1WB···O2Pii0.842.322.777 (15)114
C35—H35···Cgiii0.933.143.944148

Symmetry codes: (ii) −x+1, −y, −z+1; (iii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2277).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem.4, 31–39. [PubMed]
  • Boseggia, E., Gatos, M., Lucatello, L., Mancin, F., Moro, S., Palumbo, M., Sissi, C., Tecilla, P., Tonellato, U. & Zagotto, G. (2004). J. Am. Chem. Soc.126, 4543–4549. [PubMed]
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Gross, F. & Vahrenkamp, H. (2005). Inorg. Chem.44, 3321–3329. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Mancin, F. & Tecillia, P. (2007). New J. Chem.31, 800–817.
  • Mitić, N., Smith, S. J., Neves, A., Guddat, L. W., Gahan, L. R. & Schenk, G. (2006). Chem. Rev.106, 3338–3363. [PubMed]
  • Morrow, J. R. & Iranzo, O. (2004). Curr. Opin. Chem. Biol.8, 192–200. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Ojida, A., Nonaka, H., Miyahara, Y., Tamaru, S., Sada, K. & Hamachi, I. (2006). Angew. Chem. Int. Ed.45, 5518–5521. [PubMed]
  • Parkin, G. (2004). Chem. Rev.104, 699–767. [PubMed]
  • Rajski, S. R. & Williams, R. M. (1998). Chem. Rev.98, 2723–2795. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singla, A. K. & Wadhwa, H. (1995). Int. J. Pharm.120, 145–155.
  • Spek, A. L. (1996). HELENA University of Utrecht, The Netherlands.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Trösch, A. & Vahrenkamp, H. (1998). Eur. J. Inorg. Chem. pp. 827–832.
  • Yan, S. & Que, L. (1988). J. Am. Chem. Soc.110, 5222–25224.
  • Zhou, Q., Hambley, T. W., Kennedy, B. J. & Lay, P. A. (2003). Inorg. Chem.42, 8557–8566. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography