PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m114–m115.
Published online 2010 January 9. doi:  10.1107/S1600536809055305
PMCID: PMC2979696

Bis(1,5-diphenyl­carbazonato)di­methano­lcobalt(II)

Abstract

The structure of the title compound, [Co(C13H11N4O)2(CH3OH)2], is a mononuclear six-coordinated octa­hedral cobalt(II) complex of C i mol­ecular symmetry. The CoII ion is coordinated by two N atoms and two O atoms from two 1,5-biphenyl­carbazide ligands, and two O atoms from two methanol molecules. Two diphenyl­carbazidate ligands and the central CoII ion form the basal plane, with the two methanol mol­ecules located in axial positions. The crystal packing is defined by bifurcated O—H(...)N hydrogen bonding and intra­molecular N—H(...)O inter­actions.

Related literature

For the use of biphenyl­carbazide for the analytical determination of chromium in biological materials, see: Yarbro & Flaschka (1976 [triangle]). For its coordination modes, see: Feigl (1924 [triangle]); Shafranskii & Mal’kova (1975a [triangle],b [triangle]); Martynova et al. (1985 [triangle]); Turkington & Tracy (1958 [triangle]); Deshpande & Jain (1988 [triangle]). For related literature, see: Pankaj & Chauhan (2004 [triangle]); Sollott & Peterson (1969 [triangle]); Cazeneuve (1900a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m114-scheme1.jpg

Experimental

Crystal data

  • [Co(C13H11N4O)2(CH4O)2]
  • M r = 601.53
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m114-efi1.jpg
  • a = 6.492 (2) Å
  • b = 8.926 (3) Å
  • c = 25.159 (9) Å
  • β = 92.372 (6)°
  • V = 1456.7 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.64 mm−1
  • T = 296 K
  • 0.35 × 0.28 × 0.27 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.808, T max = 0.847
  • 6990 measured reflections
  • 2564 independent reflections
  • 2037 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.117
  • S = 1.08
  • 2564 reflections
  • 196 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809055305/kp2244sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055305/kp2244Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors appreciate the financial support of the Hundred Talents Program (2005012) of CAS, the Natural Science Foundation of China (20872105), the ‘Qinglan Project’ of Jiangsu Province (Bu109805) and the Natural Science Foundation of Qinghai Province (2006-G-105).

supplementary crystallographic information

Comment

The diphenylcarbazide is often used for analytical determination of chromium in biological materials (Yarbro et al. 1976). As a multidentate ligand, diphenylcarbazide chelates the metal centres by two N atoms (Feigl 1924) or coordinates with the metal ions by O atom in monodentate fashion (Shafranskii et al., 1975a,b; Martynova et al., 1985), whereas the examples of diphenylcarbazide complexes, in which the ligands chelated metal ions bidentately by one O atom and one N atom, were very rare (Turkington et al., 1958; Deshpande et al., 1988). Herein we report the synthesis and crystal structure of such diphenylcarbazide coordinated cobalt complex with Co occuping an inversion centre (Fig. 1 and Table 1). The Packing diagram of I viewed down the a axis (Fig. 2) reveals hydrogen bond interactions (Table 2).

Experimental

The compound 1 was synthesized by solvothermal reaction. A mixture of diphenylcarbazide (0.0499 g, 0.2 mmol), Co(CH3COO)2.4H2O (0.0245 g, 0.1 mmol) and CH3OH / CH3CN (v / v = 2: 1, 2 ml) was sealed in a 5 ml glass tube and heated to 353 K for 48 h. After cooling to room temperature, purple crystals were obtained.

Refinement

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å, and torsion angles were refined, Uiso(H) = 1.5 Ueq(C, O). Other H atoms were placed in calculated positions with C—H = 0.93 (aromatic) or 0.803 Å (Imino) and refined in riding mode, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
Molecular structure showing 50% probability displacement ellipsoids. H atoms are omitted for clarity.
Fig. 2.
Packing diagram viewed down the a axis. Symmetry code corresponds to A:-x+2,-y+2,-z+2.

Crystal data

[Co(C13H11N4O)2(CH4O)2]F(000) = 626
Mr = 601.53Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2392 reflections
a = 6.492 (2) Åθ = 2.4–24.6°
b = 8.926 (3) ŵ = 0.64 mm1
c = 25.159 (9) ÅT = 296 K
β = 92.372 (6)°Block, clear violet
V = 1456.7 (9) Å30.35 × 0.28 × 0.27 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer2564 independent reflections
Radiation source: fine-focus sealed tube2037 reflections with I > 2σ(I)
graphiteRint = 0.046
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −7→7
Tmin = 0.808, Tmax = 0.847k = −10→10
6990 measured reflectionsl = −20→29

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0652P)2 + 0.0401P] where P = (Fo2 + 2Fc2)/3
2564 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co11.00001.00001.00000.03524 (19)
C10.8530 (5)0.7374 (3)1.09426 (11)0.0528 (7)
H10.97580.78991.09140.063*
C20.8241 (6)0.6473 (4)1.13836 (11)0.0640 (9)
H20.92700.64041.16510.077*
C30.6446 (6)0.5688 (4)1.14251 (13)0.0642 (9)
H30.62560.50871.17210.077*
C40.4933 (5)0.5785 (4)1.10342 (14)0.0720 (10)
H40.37210.52411.10640.086*
C50.5185 (5)0.6687 (4)1.05925 (13)0.0634 (9)
H50.41450.67531.03280.076*
C60.7007 (4)0.7492 (3)1.05484 (10)0.0382 (6)
C70.6545 (4)0.9405 (3)0.93219 (10)0.0367 (6)
C80.4192 (4)1.0503 (3)0.80937 (10)0.0437 (6)
C90.2276 (5)0.9825 (3)0.80672 (13)0.0584 (8)
H90.19070.91570.83300.070*
C100.0906 (6)1.0150 (4)0.76451 (14)0.0710 (10)
H10−0.03850.96970.76270.085*
C110.1441 (6)1.1139 (4)0.72520 (13)0.0719 (10)
H110.05091.13610.69720.086*
C120.3356 (6)1.1794 (4)0.72765 (11)0.0648 (9)
H120.37201.24500.70090.078*
C130.4753 (5)1.1491 (3)0.76934 (10)0.0538 (7)
H130.60471.19400.77070.065*
C140.9161 (6)1.3027 (4)1.06416 (16)0.0849 (12)
H14A1.03191.27261.08660.127*
H14B0.80901.34051.08570.127*
H14C0.95801.37971.04030.127*
N10.7412 (3)0.8471 (2)1.01157 (8)0.0359 (5)
N20.6030 (3)0.8460 (2)0.97330 (8)0.0391 (5)
N30.5120 (3)0.9360 (3)0.89297 (8)0.0411 (5)
N40.5597 (4)1.0247 (3)0.85196 (9)0.0463 (6)
O10.8187 (3)1.0213 (2)0.93292 (7)0.0438 (5)
O20.8423 (3)1.1797 (2)1.03493 (9)0.0570 (6)
H4'0.660 (5)1.073 (3)0.8563 (11)0.048 (9)*
H2'0.720 (6)1.167 (4)1.0382 (13)0.084 (12)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0269 (3)0.0445 (3)0.0341 (3)−0.0019 (2)−0.00083 (18)−0.0004 (2)
C10.0589 (19)0.0546 (17)0.0445 (16)−0.0123 (14)−0.0024 (14)0.0054 (13)
C20.088 (3)0.0600 (19)0.0428 (16)−0.0077 (18)−0.0077 (16)0.0091 (14)
C30.086 (3)0.0534 (18)0.0543 (19)−0.0007 (18)0.0204 (18)0.0125 (15)
C40.057 (2)0.074 (2)0.086 (3)−0.0096 (18)0.0160 (19)0.029 (2)
C50.0419 (17)0.076 (2)0.073 (2)−0.0062 (16)0.0013 (15)0.0258 (17)
C60.0402 (14)0.0368 (13)0.0382 (14)0.0022 (11)0.0080 (11)−0.0002 (11)
C70.0284 (13)0.0454 (13)0.0362 (13)0.0017 (11)0.0003 (10)−0.0023 (11)
C80.0474 (17)0.0479 (15)0.0352 (14)0.0059 (12)−0.0044 (12)−0.0064 (11)
C90.064 (2)0.0593 (19)0.0508 (18)−0.0049 (15)−0.0145 (15)0.0038 (14)
C100.066 (2)0.078 (2)0.066 (2)−0.0084 (18)−0.0298 (17)0.0024 (18)
C110.087 (3)0.071 (2)0.0549 (19)0.013 (2)−0.0312 (18)−0.0007 (18)
C120.093 (3)0.0605 (19)0.0408 (17)0.0102 (18)−0.0044 (16)0.0036 (14)
C130.0610 (19)0.0583 (18)0.0420 (15)0.0018 (15)0.0001 (13)−0.0031 (13)
C140.058 (2)0.084 (3)0.113 (3)−0.0036 (19)0.015 (2)−0.047 (2)
N10.0296 (11)0.0426 (12)0.0355 (11)0.0026 (9)0.0028 (9)−0.0024 (9)
N20.0313 (11)0.0472 (13)0.0386 (12)0.0003 (9)0.0013 (9)−0.0009 (10)
N30.0342 (12)0.0524 (13)0.0365 (12)−0.0015 (10)−0.0017 (9)−0.0010 (10)
N40.0397 (14)0.0592 (16)0.0394 (13)−0.0065 (12)−0.0059 (10)0.0034 (11)
O10.0355 (10)0.0560 (12)0.0395 (10)−0.0074 (9)−0.0035 (8)0.0049 (8)
O20.0295 (11)0.0635 (13)0.0786 (15)−0.0035 (10)0.0100 (10)−0.0232 (11)

Geometric parameters (Å, °)

Co1—O1i2.0263 (18)C8—C91.383 (4)
Co1—O12.0263 (18)C8—N41.397 (3)
Co1—O22.114 (2)C8—C131.398 (4)
Co1—O2i2.114 (2)C9—C101.387 (4)
Co1—N1i2.193 (2)C9—H90.9300
Co1—N12.193 (2)C10—C111.381 (5)
C1—C61.375 (4)C10—H100.9300
C1—C21.389 (4)C11—C121.373 (5)
C1—H10.9300C11—H110.9300
C2—C31.368 (5)C12—C131.384 (4)
C2—H20.9300C12—H120.9300
C3—C41.363 (5)C13—H130.9300
C3—H30.9300C14—O21.395 (4)
C4—C51.387 (4)C14—H14A0.9600
C4—H40.9300C14—H14B0.9600
C5—C61.392 (4)C14—H14C0.9600
C5—H50.9300N1—N21.289 (3)
C6—N11.429 (3)N3—N41.347 (3)
C7—O11.286 (3)N4—H4'0.78 (3)
C7—N31.325 (3)O2—H2'0.81 (4)
C7—N21.386 (3)
O1i—Co1—O1179.999 (1)C9—C8—N4121.6 (3)
O1i—Co1—O289.97 (8)C9—C8—C13120.1 (3)
O1—Co1—O290.03 (8)N4—C8—C13118.3 (3)
O1i—Co1—O2i90.03 (8)C8—C9—C10119.5 (3)
O1—Co1—O2i89.97 (8)C8—C9—H9120.2
O2—Co1—O2i179.997 (1)C10—C9—H9120.2
O1i—Co1—N1i75.34 (7)C11—C10—C9120.7 (3)
O1—Co1—N1i104.66 (7)C11—C10—H10119.7
O2—Co1—N1i88.27 (8)C9—C10—H10119.7
O2i—Co1—N1i91.73 (8)C12—C11—C10119.6 (3)
O1i—Co1—N1104.66 (7)C12—C11—H11120.2
O1—Co1—N175.34 (7)C10—C11—H11120.2
O2—Co1—N191.73 (8)C11—C12—C13121.0 (3)
O2i—Co1—N188.27 (8)C11—C12—H12119.5
N1i—Co1—N1180.0C13—C12—H12119.5
C6—C1—C2120.2 (3)C12—C13—C8119.1 (3)
C6—C1—H1119.9C12—C13—H13120.4
C2—C1—H1119.9C8—C13—H13120.4
C3—C2—C1120.1 (3)O2—C14—H14A109.5
C3—C2—H2120.0O2—C14—H14B109.5
C1—C2—H2120.0H14A—C14—H14B109.5
C4—C3—C2120.2 (3)O2—C14—H14C109.5
C4—C3—H3119.9H14A—C14—H14C109.5
C2—C3—H3119.9H14B—C14—H14C109.5
C3—C4—C5120.6 (3)N2—N1—C6114.8 (2)
C3—C4—H4119.7N2—N1—Co1114.78 (15)
C5—C4—H4119.7C6—N1—Co1130.38 (16)
C4—C5—C6119.5 (3)N1—N2—C7111.8 (2)
C4—C5—H5120.3C7—N3—N4112.2 (2)
C6—C5—H5120.3N3—N4—C8121.3 (3)
C1—C6—C5119.4 (3)N3—N4—H4'116 (2)
C1—C6—N1116.5 (2)C8—N4—H4'122 (2)
C5—C6—N1124.1 (3)C7—O1—Co1114.33 (15)
O1—C7—N3125.5 (2)C14—O2—Co1130.91 (19)
O1—C7—N2123.8 (2)C14—O2—H2'112 (3)
N3—C7—N2110.8 (2)Co1—O2—H2'116 (3)
C6—C1—C2—C30.6 (5)O1—Co1—N1—C6178.9 (2)
C1—C2—C3—C40.1 (5)O2—Co1—N1—C6−91.5 (2)
C2—C3—C4—C5−0.5 (6)O2i—Co1—N1—C688.5 (2)
C3—C4—C5—C60.4 (5)N1i—Co1—N1—C6−89 (10)
C2—C1—C6—C5−0.8 (4)C6—N1—N2—C7−178.5 (2)
C2—C1—C6—N1178.5 (3)Co1—N1—N2—C71.8 (2)
C4—C5—C6—C10.3 (5)O1—C7—N2—N1−1.2 (3)
C4—C5—C6—N1−178.9 (3)N3—C7—N2—N1179.1 (2)
N4—C8—C9—C10177.9 (3)O1—C7—N3—N41.5 (4)
C13—C8—C9—C10−0.9 (5)N2—C7—N3—N4−178.9 (2)
C8—C9—C10—C110.1 (5)C7—N3—N4—C8−172.2 (2)
C9—C10—C11—C120.7 (5)C9—C8—N4—N3−1.8 (4)
C10—C11—C12—C13−0.8 (5)C13—C8—N4—N3177.1 (3)
C11—C12—C13—C80.0 (5)N3—C7—O1—Co1179.6 (2)
C9—C8—C13—C120.9 (4)N2—C7—O1—Co1−0.1 (3)
N4—C8—C13—C12−178.0 (3)O1i—Co1—O1—C7129 (3)
C1—C6—N1—N2174.5 (2)O2—Co1—O1—C7−90.99 (18)
C5—C6—N1—N2−6.3 (4)O2i—Co1—O1—C789.01 (18)
C1—C6—N1—Co1−5.9 (3)N1i—Co1—O1—C7−179.21 (17)
C5—C6—N1—Co1173.3 (2)N1—Co1—O1—C70.79 (17)
O1i—Co1—N1—N2178.49 (15)O1i—Co1—O2—C1444.4 (3)
O1—Co1—N1—N2−1.51 (15)O1—Co1—O2—C14−135.6 (3)
O2—Co1—N1—N288.07 (17)O2i—Co1—O2—C14−89 (4)
O2i—Co1—N1—N2−91.93 (17)N1i—Co1—O2—C14−30.9 (3)
N1i—Co1—N1—N291 (10)N1—Co1—O2—C14149.1 (3)
O1i—Co1—N1—C6−1.1 (2)

Symmetry codes: (i) −x+2, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4'···O10.78 (3)2.20 (3)2.587 (3)111 (2)
O2—H2'···N2ii0.81 (4)2.11 (4)2.899 (3)166 (3)
O2—H2'···N3ii0.81 (4)2.52 (4)3.161 (3)138 (3)

Symmetry codes: (ii) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2244).

References

  • Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cazeneuve, P. (1900a). Bull. Soc. Chim. Fr.23, 592–600.
  • Cazeneuve, P. (1900b). C. R. Hebd Seances Acad. Sci.130, 1561–1563.
  • Deshpande, S. G. & Jain, S. C. (1988). Indian J. Chem. Sect. A, 27, 552–554.
  • Feigl, F. (1924). Ber. Wien. Akad. IIb, 133, 115–132.
  • Martynova, T. K., Neverov, V. A., Byushkin, V. N., Shafranskii, V. N. & Malkova, T. A. (1985). Koord. Khim., 11, 132–135.
  • Pankaj, & Chauhan, M. (2004). Indian J. Chem. Sect. A Inorg. Bio-inorg. Phys. Theor. Anal. Chem.43, 1206–1209.
  • Shafranskii, V. N. & Mal’kova, T. A. (1975a). Zh. Obshch. Khim.45, 1065–1069
  • Shafranskii, V. N. & Mal’kova, T. A. (1975b). J. Gen. Chem. (USSR), 45, 1051–1054.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sollott, G. P. & Peterson, W. R. (1969). J. Org. Chem.34, 1506–1508.
  • Turkington, R. W. & Tracy, F. M. (1958). Anal. Chem.30, 1699–1701.
  • Yarbro, S. & Flaschka, H. A. (1976). Microchem J.21, 415–423.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography