PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o320.
Published online 2010 January 9. doi:  10.1107/S1600536809055524
PMCID: PMC2979695

(E)-3-(9-Anthr­yl)-1-(4-fluoro­phen­yl)-2-(4-nitro-1H-imidazol-1-yl)prop-2-en-1-one

Abstract

In the title compound, C26H16FN3O3, the dihedral angle between the anthryl and fluoro­phenyl groups is 37.8 (1)°. With respect to the imidazolyl group, the twist angles between the imidazolyl group and the anthryl unit and between the imidazoly group and the fluoro­phenyl group are 64.4 (1) and 74.5 (1)°, respectively.

Related literature

For general background to chalcone derivatives, see: Detsi et al. (2009 [triangle]). For the synthesis, see: Erhardt et al. (1985 [triangle]); Kranz et al. (1980 [triangle]). For related structures, see: Lu et al. (2009 [triangle]); Wang et al. (2009 [triangle]). For a comment on the mol­ecular shape, see: Hou et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o320-scheme1.jpg

Experimental

Crystal data

  • C26H16FN3O3
  • M r = 437.42
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o320-efi1.jpg
  • a = 9.3362 (6) Å
  • b = 10.9587 (6) Å
  • c = 11.6018 (5) Å
  • α = 70.371 (5)°
  • β = 88.062 (4)°
  • γ = 66.781 (6)°
  • V = 1020.78 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 173 K
  • 0.49 × 0.41 × 0.30 mm

Data collection

  • Oxford Diffraction Xcaliber diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.951, T max = 0.970
  • 8826 measured reflections
  • 4374 independent reflections
  • 3193 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.090
  • S = 1.01
  • 4374 reflections
  • 298 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809055524/ng2707sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055524/ng2707Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Southwest University (grant Nos. SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (grant Nos. 2007BB5369 and 2006BB4341) for financial support.

supplementary crystallographic information

Comment

Chalcones (1,3-diaryl-2-propen-1-ones) are flavonoid and isoflavnoid precursors which are abundant in edible plants and display wide biological activities such as antioxidant, antibacterial, antileishmanial, anticancer, antiangiogenic, anti-infective and anti-inflammatory activities. Chalcone derivatives have received much attention due to their relatively simple structures, and wide variety of biological activities (Detsi et al. 2009). A series of chalcone derivatives containing imidazole ring have been synthesized and crystal structures of some of them have been reported (Lu et al. 2009; Wang et al. 2009). We report here the structure of the title compound (I).

The title compound (I), C26H16FN3O3, shows an organic-clip-shaped motif (Hou et al. 2009). The ringent dihedral angle between the anthryl unit and the fluorophenyl group is 37.80°. The imidazolyl group can be seen as the handle of organic clip, and the dihedral angles between the imidazolyl group and the anthryl unit or the fluorophenyl group are 64.40° and 74.51° respectively. In the solid state, the compound (I) is stabilized by weak intermolecule C—H···O and C—H···F hydrogen bonds generating an infinite two-dimensional network.

Experimental

Compound (I) was synthesized according to the procedure of Erhardt et al. (1985) and Kranz et al. (1980). Single crystals (I) suitable for X-ray analysis were grown in dichloromethane by slow evaporation at room temperature.

Refinement

Hydrogen atoms were placed in calculated positions with C—H = 0.95Å (aromatic ring) with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing theatom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Part of the CrystalStructure of (I), showing the formation of the three-dimensional network.

Crystal data

C26H16FN3O3Z = 2
Mr = 437.42F(000) = 452
Triclinic, P1Dx = 1.423 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3362 (6) ÅCell parameters from 8826 reflections
b = 10.9587 (6) Åθ = 2.8–27.0°
c = 11.6018 (5) ŵ = 0.10 mm1
α = 70.371 (5)°T = 173 K
β = 88.062 (4)°Block, yellow
γ = 66.781 (6)°0.49 × 0.41 × 0.30 mm
V = 1020.78 (10) Å3

Data collection

Oxford Diffraction Xcaliber diffractometer4374 independent reflections
Radiation source: fine-focus sealed tube3193 reflections with I > 2σ(I)
graphiteRint = 0.020
Detector resolution: 0.01 pixels mm-1θmax = 27.0°, θmin = 2.8°
ω scansh = −11→11
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)k = −13→12
Tmin = 0.951, Tmax = 0.970l = −14→14
8826 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0501P)2] where P = (Fo2 + 2Fc2)/3
4374 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F10.40315 (10)0.15681 (10)1.18206 (7)0.0560 (3)
O10.12744 (13)−0.02448 (11)0.81580 (8)0.0455 (3)
N30.19905 (12)0.08673 (11)0.58002 (8)0.0261 (2)
C150.10394 (14)0.30540 (13)0.61663 (11)0.0282 (3)
H15A0.10640.34810.53090.034*
C170.16584 (14)0.07397 (13)0.79428 (10)0.0275 (3)
C230.33391 (14)0.16396 (13)0.87665 (11)0.0270 (3)
H23A0.36710.19290.79750.032*
C140.04204 (14)0.40033 (13)0.68792 (10)0.0272 (3)
C6−0.08868 (15)0.40198 (13)0.75307 (10)0.0282 (3)
C180.22475 (14)0.10459 (12)0.89378 (10)0.0244 (3)
C70.11980 (15)0.48598 (13)0.69277 (11)0.0291 (3)
C220.39456 (15)0.18126 (13)0.97408 (12)0.0333 (3)
H22A0.47040.22070.96360.040*
N20.18404 (14)0.02358 (13)0.41956 (9)0.0390 (3)
C190.17599 (15)0.06337 (14)1.01033 (10)0.0323 (3)
H19A0.10230.02161.02260.039*
C120.07161 (15)0.56901 (13)0.77072 (11)0.0326 (3)
C160.15658 (14)0.16506 (13)0.66238 (10)0.0255 (3)
C260.32395 (15)−0.05927 (13)0.49025 (10)0.0295 (3)
O20.56329 (12)−0.24366 (12)0.53163 (10)0.0525 (3)
C80.25072 (16)0.48911 (14)0.62676 (12)0.0368 (3)
H8A0.28380.43650.57310.044*
C1−0.13552 (15)0.48673 (14)0.83035 (11)0.0330 (3)
C200.23331 (16)0.08250 (15)1.10757 (11)0.0368 (3)
H20A0.19860.05681.18660.044*
C210.34228 (15)0.13994 (14)1.08624 (11)0.0346 (3)
O30.41958 (15)−0.18717 (12)0.36400 (9)0.0656 (4)
C13−0.05363 (16)0.56575 (14)0.83786 (12)0.0358 (3)
H13A−0.08420.61950.89070.043*
C5−0.17915 (15)0.32560 (14)0.74550 (12)0.0343 (3)
H5A−0.15290.27150.69290.041*
C2−0.26464 (17)0.48480 (16)0.89925 (13)0.0437 (4)
H2A−0.29490.53860.95210.052*
C110.15633 (17)0.64982 (15)0.77975 (12)0.0405 (3)
H11A0.12420.70630.83030.049*
C90.32888 (18)0.56622 (15)0.63942 (13)0.0450 (4)
H9A0.41650.56590.59530.054*
C4−0.30200 (17)0.32892 (16)0.81208 (13)0.0433 (4)
H4A−0.36040.27700.80570.052*
C100.28170 (19)0.64686 (16)0.71722 (13)0.0472 (4)
H10A0.33840.69940.72570.057*
C3−0.34423 (18)0.40905 (17)0.89124 (14)0.0484 (4)
H3A−0.42920.40890.93870.058*
N10.44252 (15)−0.17030 (13)0.45944 (10)0.0389 (3)
C250.33644 (15)−0.02437 (13)0.58946 (11)0.0294 (3)
H25A0.4225−0.06810.65190.035*
C240.11069 (16)0.11104 (15)0.47696 (11)0.0357 (3)
H24A0.00770.18320.45000.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.0625 (6)0.0621 (6)0.0440 (5)−0.0166 (5)−0.0174 (4)−0.0276 (5)
O10.0783 (8)0.0471 (6)0.0291 (5)−0.0426 (6)0.0100 (5)−0.0145 (5)
N30.0312 (6)0.0287 (6)0.0189 (5)−0.0111 (5)0.0027 (4)−0.0102 (4)
C150.0326 (7)0.0304 (7)0.0205 (6)−0.0121 (6)0.0030 (5)−0.0088 (5)
C170.0327 (7)0.0276 (7)0.0239 (6)−0.0126 (6)0.0054 (5)−0.0108 (5)
C230.0278 (6)0.0230 (6)0.0263 (6)−0.0074 (5)0.0035 (5)−0.0077 (5)
C140.0313 (7)0.0220 (6)0.0214 (6)−0.0051 (5)−0.0018 (5)−0.0057 (5)
C60.0308 (7)0.0245 (6)0.0234 (6)−0.0056 (6)−0.0015 (5)−0.0075 (5)
C180.0259 (6)0.0228 (6)0.0205 (6)−0.0052 (5)0.0008 (5)−0.0083 (5)
C70.0330 (7)0.0205 (6)0.0246 (6)−0.0057 (6)−0.0036 (5)−0.0026 (5)
C220.0286 (7)0.0277 (7)0.0419 (7)−0.0081 (6)−0.0036 (6)−0.0135 (6)
N20.0484 (7)0.0445 (7)0.0244 (5)−0.0142 (6)0.0014 (5)−0.0177 (5)
C190.0353 (7)0.0393 (8)0.0243 (6)−0.0178 (6)0.0060 (5)−0.0107 (6)
C120.0377 (7)0.0225 (6)0.0302 (6)−0.0066 (6)−0.0049 (6)−0.0065 (5)
C160.0290 (6)0.0291 (7)0.0209 (6)−0.0117 (6)0.0044 (5)−0.0122 (5)
C260.0372 (7)0.0302 (7)0.0245 (6)−0.0151 (6)0.0099 (5)−0.0127 (5)
O20.0431 (6)0.0485 (7)0.0645 (7)−0.0085 (6)0.0074 (6)−0.0305 (6)
C80.0407 (8)0.0285 (7)0.0353 (7)−0.0119 (6)0.0036 (6)−0.0069 (6)
C10.0354 (7)0.0281 (7)0.0298 (6)−0.0055 (6)0.0014 (6)−0.0121 (6)
C200.0419 (8)0.0438 (8)0.0208 (6)−0.0119 (7)0.0033 (6)−0.0131 (6)
C210.0353 (7)0.0334 (7)0.0298 (7)−0.0028 (6)−0.0101 (6)−0.0166 (6)
O30.0953 (9)0.0581 (7)0.0393 (6)−0.0133 (7)0.0112 (6)−0.0341 (6)
C130.0430 (8)0.0282 (7)0.0336 (7)−0.0073 (6)0.0005 (6)−0.0160 (6)
C50.0349 (7)0.0352 (7)0.0345 (7)−0.0116 (6)0.0036 (6)−0.0173 (6)
C20.0483 (9)0.0418 (8)0.0443 (8)−0.0138 (7)0.0155 (7)−0.0254 (7)
C110.0521 (9)0.0298 (7)0.0375 (7)−0.0148 (7)−0.0069 (7)−0.0100 (6)
C90.0450 (9)0.0385 (8)0.0485 (8)−0.0202 (7)0.0043 (7)−0.0077 (7)
C40.0401 (8)0.0457 (9)0.0535 (9)−0.0208 (7)0.0118 (7)−0.0253 (7)
C100.0545 (10)0.0359 (8)0.0505 (9)−0.0245 (8)−0.0082 (8)−0.0058 (7)
C30.0439 (9)0.0539 (10)0.0549 (9)−0.0196 (8)0.0226 (7)−0.0301 (8)
N10.0520 (8)0.0349 (7)0.0357 (6)−0.0196 (6)0.0167 (6)−0.0184 (6)
C250.0311 (7)0.0282 (7)0.0286 (6)−0.0099 (6)0.0008 (5)−0.0120 (6)
C240.0371 (8)0.0422 (8)0.0240 (6)−0.0100 (7)−0.0023 (6)−0.0140 (6)

Geometric parameters (Å, °)

F1—C211.3626 (13)C12—C111.4288 (18)
O1—C171.2135 (14)C26—C251.3508 (15)
N3—C251.3521 (16)C26—N11.4272 (17)
N3—C241.3641 (15)O2—N11.2312 (15)
N3—C161.4367 (14)C8—C91.3583 (18)
C15—C161.3273 (17)C8—H8A0.9500
C15—C141.4739 (16)C1—C131.3854 (18)
C15—H15A0.9500C1—C21.4270 (19)
C17—C181.4821 (15)C20—C211.3696 (19)
C17—C161.5034 (16)C20—H20A0.9500
C23—C221.3806 (16)O3—N11.2210 (13)
C23—C181.3869 (16)C13—H13A0.9500
C23—H23A0.9500C5—C41.3563 (18)
C14—C71.4095 (17)C5—H5A0.9500
C14—C61.4109 (17)C2—C31.339 (2)
C6—C51.4260 (17)C2—H2A0.9500
C6—C11.4389 (16)C11—C101.351 (2)
C18—C191.3963 (16)C11—H11A0.9500
C7—C81.4262 (18)C9—C101.411 (2)
C7—C121.4319 (17)C9—H9A0.9500
C22—C211.3682 (18)C4—C31.4192 (19)
C22—H22A0.9500C4—H4A0.9500
N2—C241.3082 (16)C10—H10A0.9500
N2—C261.3565 (16)C3—H3A0.9500
C19—C201.3752 (16)C25—H25A0.9500
C19—H19A0.9500C24—H24A0.9500
C12—C131.3885 (18)
C25—N3—C24106.98 (10)C13—C1—C2121.72 (11)
C25—N3—C16126.08 (10)C13—C1—C6119.74 (12)
C24—N3—C16126.93 (11)C2—C1—C6118.54 (12)
C16—C15—C14125.33 (11)C21—C20—C19117.49 (12)
C16—C15—H15A117.3C21—C20—H20A121.3
C14—C15—H15A117.3C19—C20—H20A121.3
O1—C17—C18121.96 (11)F1—C21—C22117.71 (12)
O1—C17—C16118.70 (10)F1—C21—C20118.41 (11)
C18—C17—C16119.33 (10)C22—C21—C20123.89 (11)
C22—C23—C18120.32 (11)C1—C13—C12122.18 (11)
C22—C23—H23A119.8C1—C13—H13A118.9
C18—C23—H23A119.8C12—C13—H13A118.9
C7—C14—C6120.79 (10)C4—C5—C6121.13 (12)
C7—C14—C15118.37 (11)C4—C5—H5A119.4
C6—C14—C15120.80 (11)C6—C5—H5A119.4
C14—C6—C5123.66 (11)C3—C2—C1121.60 (12)
C14—C6—C1118.58 (11)C3—C2—H2A119.2
C5—C6—C1117.76 (11)C1—C2—H2A119.2
C23—C18—C19119.36 (11)C10—C11—C12120.76 (13)
C23—C18—C17122.07 (10)C10—C11—H11A119.6
C19—C18—C17118.43 (11)C12—C11—H11A119.6
C14—C7—C8122.54 (11)C8—C9—C10120.93 (14)
C14—C7—C12119.57 (11)C8—C9—H9A119.5
C8—C7—C12117.84 (11)C10—C9—H9A119.5
C21—C22—C23118.05 (12)C5—C4—C3120.74 (13)
C21—C22—H22A121.0C5—C4—H4A119.6
C23—C22—H22A121.0C3—C4—H4A119.6
C24—N2—C26103.31 (10)C11—C10—C9120.38 (13)
C20—C19—C18120.87 (12)C11—C10—H10A119.8
C20—C19—H19A119.6C9—C10—H10A119.8
C18—C19—H19A119.6C2—C3—C4120.17 (13)
C13—C12—C11121.85 (12)C2—C3—H3A119.9
C13—C12—C7119.02 (11)C4—C3—H3A119.9
C11—C12—C7119.10 (12)O3—N1—O2123.78 (12)
C15—C16—N3119.29 (10)O3—N1—C26118.88 (12)
C15—C16—C17127.06 (10)O2—N1—C26117.34 (11)
N3—C16—C17113.45 (10)C26—C25—N3104.56 (11)
C25—C26—N2112.89 (11)C26—C25—H25A127.7
C25—C26—N1125.20 (12)N3—C25—H25A127.7
N2—C26—N1121.91 (11)N2—C24—N3112.26 (12)
C9—C8—C7120.97 (12)N2—C24—H24A123.9
C9—C8—H8A119.5N3—C24—H24A123.9
C7—C8—H8A119.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2707).

References

  • Detsi, A., Majdalani, M., Kontogiorgis, C., Hadjipavlou-Litina, D. & Kefalas, P. (2009). Bioorg. Med. Chem.17, 8073–8085. [PubMed]
  • Erhardt, H., Mildenberger, H., Handte, R., Sachse, B., Hartz, P. & Bürstell, H. (1985). Ger. Patent No. DE3406908.
  • Hou, G.-G., Ma, J.-P., Sun, T., Dong, Y.-B. & Huang, R.-Q. (2009). Chem. Eur. J.15, 2261–2265. [PubMed]
  • Kranz, E., Krämer, W., Büchel, K. H., Brandes, W. & Forhberger, P. E. (1980). Ger. Patent No. DE2832233.
  • Lu, Y.-H., Wang, G.-Z., Zhou, C.-H. & Zhang, Y.-Y. (2009). Acta Cryst. E65, o1396. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, G.-Z., Fang, B. & Zhou, C.-H. (2009). Acta Cryst. E65, o2619. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography