PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o311.
Published online 2010 January 9. doi:  10.1107/S1600536809055615
PMCID: PMC2979691

(E)-5-Meth­oxy-2-(o-tolyl­imino­meth­yl)phenol

Abstract

In the title compound, C15H15NO2, the phenol group make dihedral angles of 2.4 (2) and 24.1 (9)° with the imine linkage (–C=N–) and the phenyl group, respectively, and the mol­ecule adopts the enol–imine tautomeric form, so the mol­ecular structure is stabilized by a strong intra­molecular O—H(...)N hydrogen bond. The crystal structure features a weak C—H(...)π inter­action.

Related literature

For the relationships between thermochromism and photochromism and the planarity of mol­ecules, see: Moustakali-Mavridis et al. (1980 [triangle]). For bond lengths in related structures, see: Tanak & Yavuz (2009 [triangle]); Koşar et al. (2009 [triangle].

An external file that holds a picture, illustration, etc.
Object name is e-66-0o311-scheme1.jpg

Experimental

Crystal data

  • C15H15NO2
  • M r = 241.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o311-efi1.jpg
  • a = 22.3720 (16) Å
  • b = 7.3191 (4) Å
  • c = 22.1704 (14) Å
  • β = 136.094 (4)°
  • V = 2517.5 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.80 × 0.46 × 0.21 mm

Data collection

  • Stoe IPDS II diffractometer
  • Absorption correction: integration (X-RED; Stoe & Cie, 2002 [triangle]) T min = 0.948, T max = 0.984
  • 17732 measured reflections
  • 2914 independent reflections
  • 1935 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.122
  • S = 1.03
  • 2914 reflections
  • 167 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809055615/bx2258sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055615/bx2258Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayis University, Turkey, for the use of the diffractometer (purchased under grant F.279 of University Research Fund).

supplementary crystallographic information

Comment

Schiff bases are formed by reaction of a primary amine and an aldehyde and have a wide area of usage as ligands in coordination chemistry. Especially o-hydroxy Schiff base derivatives are important classes have attracted the interest of chemists and physicist because of their photochromic and thermochromic features in the solid state. These features are caused by the proton transfer to N atom from O atom with light in photochromic or with temperature in thermochromic Schiff bases. It has been claimed that the molecules showing thermochromism are planar and showing photochromism are non-planar (Moustakali-Mavridis et al., 1980). In general, o-Hydroxy Schiff bases can be found at two possible tautomeric forms called as phenol-imine and keto-amine. The molecular structure of the title compound (I), is the enol-imine tautomer, as indicated by the following bond lengths: N1═C8 (1.284 (2) Å), C8—C9 (1.439 (2) Å) and C10—O1 (1.3445 (18) Å). These bond lengths are in a good agreement with observed for (E)-2-[(4-Chlorophenyl)iminomethyl]-5- methoxyphenol [1.282 (2), 1.436 (2) and 1.3452 (18) Å; Koşar et al., 2009], which is also enol-imine tautomer. The same bond lengths are comparable with observed for (E)-2-[(2-Hydroxy-5-nitrophenyl)-iminomethyl]-4-nitrophenolate [1.288, 1.420 and 1.2749 Å; Tanak & Yavuz, 2009], which is a keto-amine tautomer. The molecule is not planar and make a dihedral angle of 2.4 (2) and 24.1 (9)° with the imine linkage and the phenyl group respectively and shows photochromic features. As a result of enol-imine form of the molecule, there is a strong intramolecular hydrogen bond between the atom O1 and atom N1 (Fig. 1).The crystal structure is primarily determined by one weak C—H···π ( Cg = C1/C6) and van der Waals interactions, Table 1.

Experimental

For the preparation of (E)-5-methoxy-2-[(o-tolylimino)methyl]phenol compound the mixture of 4-methoxysalicylaldehyde (0.5 g, 3.3 mmol) in ethanol (20 ml) and 2-methylaniline (0.35 g, 3.3 mmol) in ethanol (20 ml) was stirred for 1 h under reflux. The crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation (yield; %76, m.p.; 372 K).

Refinement

All H atoms except for H16 were refined using riding model with C—H distances of 0.96 Å for methyl group and 0.93 Å for aromatic groups. The displacement parameters of these H atoms were fixed at 1.2 Ueq of their parent carbon atom for aromatic groups and 1.5 Ueq of their parent atoms for methyl group.

Figures

Fig. 1.
Thermal ellipsoid view of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres with arbitrary radii. Dashed line indicates the intramolecular hydrogen bond.
Fig. 2.
Part of crystal structure of molecule, showing the C—H···π bonds. For clarity, H atoms not included in intermolecular bonding have been omitted. For symmetry codes, see Table 1.

Crystal data

C15H15NO2F(000) = 1024
Mr = 241.28Dx = 1.273 Mg m3
Monoclinic, C2/cMelting point: 372 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 22.3720 (16) ÅCell parameters from 2073 reflections
b = 7.3191 (4) Åθ = 1.9–28.0°
c = 22.1704 (14) ŵ = 0.09 mm1
β = 136.094 (4)°T = 293 K
V = 2517.5 (3) Å3Prism, yellow
Z = 80.80 × 0.46 × 0.21 mm

Data collection

Stoe IPDS II diffractometer2914 independent reflections
Radiation source: fine-focus sealed tube1935 reflections with I > 2σ(I)
graphiteRint = 0.053
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scanh = −28→28
Absorption correction: integration (X-RED; Stoe & Cie, 2002)k = −9→9
Tmin = 0.948, Tmax = 0.984l = −28→28
17732 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0534P)2 + 0.4484P] where P = (Fo2 + 2Fc2)/3
2914 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.12 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.44408 (9)0.4751 (2)0.61857 (10)0.0585 (4)
C20.48769 (10)0.4298 (2)0.59731 (11)0.0628 (4)
C30.54314 (12)0.5583 (3)0.61274 (13)0.0750 (5)
H30.57340.52930.59980.090*
C40.55431 (13)0.7276 (3)0.64672 (13)0.0829 (6)
H40.59320.81010.65840.100*
C50.50793 (15)0.7743 (3)0.66328 (13)0.0839 (6)
H50.51410.89000.68460.101*
C60.45217 (12)0.6501 (2)0.64842 (11)0.0708 (5)
H60.41980.68330.65840.085*
C70.47509 (15)0.2476 (3)0.55859 (15)0.0866 (6)
H7A0.41560.23320.50440.104*
H7B0.49130.15240.59790.104*
H7C0.51030.24050.54860.104*
C80.37691 (10)0.3374 (2)0.65349 (10)0.0626 (4)
H80.39720.43360.69170.075*
C90.32840 (9)0.1941 (2)0.64692 (9)0.0556 (4)
C100.29831 (9)0.0417 (2)0.59225 (10)0.0543 (4)
C110.25453 (10)−0.0984 (2)0.58927 (10)0.0568 (4)
H110.2359−0.19960.55390.068*
C120.23880 (9)−0.0871 (2)0.63893 (10)0.0555 (4)
C130.26662 (11)0.0640 (2)0.69232 (10)0.0624 (4)
H130.25520.07170.72510.075*
C140.31064 (10)0.2001 (2)0.69596 (10)0.0630 (4)
H140.32950.29990.73200.076*
C150.16589 (13)−0.3735 (3)0.58692 (13)0.0782 (5)
H15A0.2134−0.43520.60260.094*
H15B0.1254−0.33580.52720.094*
H15C0.1381−0.45470.59460.094*
N10.39313 (8)0.33716 (19)0.60847 (8)0.0602 (4)
O10.31237 (8)0.02673 (19)0.54283 (8)0.0683 (3)
O20.19682 (8)−0.21732 (17)0.64089 (8)0.0701 (3)
H160.3415 (14)0.134 (3)0.5514 (14)0.102 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0516 (8)0.0595 (10)0.0495 (8)−0.0007 (7)0.0314 (7)0.0071 (7)
C20.0593 (9)0.0617 (10)0.0615 (9)0.0016 (8)0.0415 (8)0.0104 (8)
C30.0684 (10)0.0764 (12)0.0796 (12)−0.0016 (9)0.0531 (10)0.0124 (10)
C40.0808 (12)0.0762 (14)0.0748 (12)−0.0196 (10)0.0504 (11)0.0049 (10)
C50.1089 (15)0.0595 (11)0.0715 (12)−0.0139 (11)0.0611 (12)−0.0009 (9)
C60.0797 (11)0.0627 (11)0.0640 (10)0.0004 (9)0.0498 (10)0.0056 (8)
C70.1093 (15)0.0689 (12)0.1185 (17)−0.0058 (11)0.0944 (15)−0.0008 (12)
C80.0550 (9)0.0661 (10)0.0533 (9)−0.0033 (7)0.0346 (8)−0.0030 (8)
C90.0513 (8)0.0622 (9)0.0488 (8)−0.0004 (7)0.0345 (7)−0.0003 (7)
C100.0511 (8)0.0643 (10)0.0499 (8)0.0035 (7)0.0371 (7)0.0020 (7)
C110.0560 (8)0.0620 (10)0.0525 (8)−0.0011 (7)0.0390 (7)−0.0040 (7)
C120.0517 (8)0.0647 (10)0.0515 (8)0.0001 (7)0.0377 (7)0.0026 (7)
C130.0675 (9)0.0751 (11)0.0551 (9)−0.0014 (9)0.0476 (8)−0.0041 (8)
C140.0649 (9)0.0677 (10)0.0542 (9)−0.0054 (8)0.0422 (8)−0.0093 (8)
C150.0935 (13)0.0710 (12)0.0880 (13)−0.0158 (10)0.0713 (12)−0.0092 (10)
N10.0544 (7)0.0645 (9)0.0573 (8)−0.0016 (6)0.0387 (7)0.0034 (7)
O10.0801 (8)0.0751 (8)0.0744 (8)−0.0093 (7)0.0640 (7)−0.0089 (6)
O20.0831 (8)0.0741 (8)0.0732 (7)−0.0146 (6)0.0630 (7)−0.0096 (6)

Geometric parameters (Å, °)

C1—C61.392 (2)C8—H80.9300
C1—C21.395 (2)C9—C141.402 (2)
C1—N11.415 (2)C9—C101.411 (2)
C2—C31.389 (2)C10—O11.3445 (18)
C2—C71.499 (3)C10—C111.387 (2)
C3—C41.376 (3)C11—C121.379 (2)
C3—H30.9300C11—H110.9300
C4—C51.370 (3)C12—O21.3604 (18)
C4—H40.9300C12—C131.397 (2)
C5—C61.378 (3)C13—C141.361 (2)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H140.9300
C7—H7A0.9600C15—O21.423 (2)
C7—H7B0.9600C15—H15A0.9600
C7—H7C0.9600C15—H15B0.9600
C8—N11.284 (2)C15—H15C0.9600
C8—C91.439 (2)O1—H160.95 (2)
C6—C1—C2119.74 (16)C14—C9—C10117.70 (15)
C6—C1—N1123.08 (16)C14—C9—C8120.87 (15)
C2—C1—N1117.18 (15)C10—C9—C8121.42 (14)
C3—C2—C1118.29 (17)O1—C10—C11118.22 (15)
C3—C2—C7120.63 (17)O1—C10—C9121.17 (15)
C1—C2—C7121.08 (15)C11—C10—C9120.60 (14)
C4—C3—C2121.47 (19)C12—C11—C10119.71 (15)
C4—C3—H3119.3C12—C11—H11120.1
C2—C3—H3119.3C10—C11—H11120.1
C5—C4—C3119.85 (18)O2—C12—C11124.24 (15)
C5—C4—H4120.1O2—C12—C13115.10 (14)
C3—C4—H4120.1C11—C12—C13120.65 (15)
C4—C5—C6120.1 (2)C14—C13—C12119.43 (15)
C4—C5—H5120.0C14—C13—H13120.3
C6—C5—H5120.0C12—C13—H13120.3
C5—C6—C1120.39 (19)C13—C14—C9121.88 (16)
C5—C6—H6119.8C13—C14—H14119.1
C1—C6—H6119.8C9—C14—H14119.1
C2—C7—H7A109.5O2—C15—H15A109.5
C2—C7—H7B109.5O2—C15—H15B109.5
H7A—C7—H7B109.5H15A—C15—H15B109.5
C2—C7—H7C109.5O2—C15—H15C109.5
H7A—C7—H7C109.5H15A—C15—H15C109.5
H7B—C7—H7C109.5H15B—C15—H15C109.5
N1—C8—C9122.35 (16)C8—N1—C1121.51 (15)
N1—C8—H8118.8C10—O1—H16107.6 (13)
C9—C8—H8118.8C12—O2—C15117.67 (13)
C6—C1—C2—C34.6 (2)C8—C9—C10—C11177.51 (14)
N1—C1—C2—C3−175.30 (14)O1—C10—C11—C12−179.80 (14)
C6—C1—C2—C7−175.26 (16)C9—C10—C11—C121.3 (2)
N1—C1—C2—C74.9 (2)C10—C11—C12—O2−179.71 (14)
C1—C2—C3—C4−1.1 (3)C10—C11—C12—C13−0.1 (2)
C7—C2—C3—C4178.75 (18)O2—C12—C13—C14178.83 (15)
C2—C3—C4—C5−2.2 (3)C11—C12—C13—C14−0.8 (2)
C3—C4—C5—C62.0 (3)C12—C13—C14—C90.6 (2)
C4—C5—C6—C11.6 (3)C10—C9—C14—C130.6 (2)
C2—C1—C6—C5−4.9 (2)C8—C9—C14—C13−178.44 (15)
N1—C1—C6—C5174.98 (15)C9—C8—N1—C1−177.22 (14)
N1—C8—C9—C14−178.93 (15)C6—C1—N1—C8−25.8 (2)
N1—C8—C9—C102.1 (2)C2—C1—N1—C8154.04 (15)
C14—C9—C10—O1179.60 (14)C11—C12—O2—C15−1.2 (2)
C8—C9—C10—O1−1.4 (2)C13—C12—O2—C15179.16 (15)
C14—C9—C10—C11−1.5 (2)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H16···N10.95 (2)1.75 (2)2.5992 (19)148.3 (19)
C15—H15B···Cgi0.962.983.900 (2)160

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2258).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Koşar, B., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2009). Acta Cryst. C65, o517–o520. [PubMed]
  • Moustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126–1130.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED Stoe & Cie, Darmstadt, Germany.
  • Tanak, H. & Yavuz, M. (2009). J. Molec. Model DOI 10.1007/s00894-009-0539-5.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography